to fit prior conceptions of learning and need enhancement to support the kinds of inferences people now want to draw about student achievement. A model of cognition and learning should serve as the cornerstone of the assessment design process. This model should be based on the best available understanding of how students represent knowledge and develop competence in the domain.

The model of learning can serve as a unifying element—a nucleus that brings cohesion to curriculum, instruction, and assessment. This cohesive function is a crucial one because educational assessment does not exist in isolation, but must be aligned with curriculum and instruction if it is to support learning.

Finally, aspects of learning that are assessed and emphasized in the classroom should ideally be consistent with (though not necessarily the same as) the aspects of learning targeted by large-scale assessments. In reality, however, these two forms of assessment are often out of alignment. The result can be conflict and frustration for both teachers and learners. Thus there is a need for better alignment among assessments used for different purposes and in different contexts.

Advances in the Sciences of Thinking and Learning

Contemporary theories of learning and knowing emphasize the way knowledge is represented, organized, and processed in the mind. Emphasis is also given to social dimensions of learning, including social and participatory practices that support knowing and understanding. This body of knowledge strongly implies that assessment practices need to move beyond a focus on component skills and discrete bits of knowledge to encompass the more complex aspects of student achievement.

Among the fundamental elements of cognition is the mind’s cognitive architecture, which includes working or short-term memory, a highly limited system, and long-term memory, a virtually limitless store of knowledge. What matters in most situations is how well one can evoke the knowledge stored in long-term memory and use it to reason efficiently about current information and problems. Therefore, within the normal range of cognitive abilities, estimates of how people organize information in long-term memory are likely to be more important than estimates of working memory capacity.

Understanding the contents of long-term memory is especially critical for determining what people know; how they know it; and how they are able to use that knowledge to answer questions, solve problems, and engage in additional learning. While the contents include both general and specific knowledge, much of what one knows is domain- and task-specific and organized into structures known as schemas. Assessments should evaluate what schemas an individual has and under what circumstances he or she regards the infor-



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement