National Academies Press: OpenBook
« Previous: 2 The Nature of Assessment and Reasoning from Evidence
Suggested Citation:"INTRODUCTION." National Research Council. 2001. Knowing What Students Know: The Science and Design of Educational Assessment. Washington, DC: The National Academies Press. doi: 10.17226/10019.
×

INTRODUCTION

The scientific basis for rethinking the foundations of assessment comes from two disciplines: cognitive science and educational measurement. The following two chapters review developments in these disciplines over the last several decades that have important implications for the design and use of educational assessments. The committee presents these developments side by side because they form the necessary and complementary foundations of the science and design of educational assessment. Modern knowledge, theories, models, and methods from these two fields provide the underpinnings of a scientifically credible and principled approach to assessment.

Chapter 3 summarizes findings from cognitive science about how people think and learn. With reference to the assessment triangle introduced in Chapter 2, cognitive research provides the scientific basis for the central model of cognition and learning that informs the assessment design, or the cognition vertex of the triangle. Cognitive research suggests the important aspects of learning about which one would want to draw inferences when measuring student achievement. It also helps determine the design of the observation corner of the triangle by suggesting the types of situations or tasks that will elicit evidence from students to support the desired inferences. Four decades of theory and research on human cognition, learning, and development has provided powerful insights into how students represent knowledge and develop competence in specific domains, as well as how tasks and situations can be designed to provide evidence for inferences about what students know and can do.

Chapter 4 summarizes the contributions that the discipline of educational measurement (psychometrics) can make to a new approach to assessment. Measurement models are statistical examples of the interpretation corner of the assessment triangle. They provide the statistical tools that make it possible to integrate the myriad of information obtained from the tasks of an assessment to formulate assessment results (inferences about student competencies). In most current forms of assessment, the measurement models are relatively simple, enabling inferences about students’ general proficiency levels and relative rankings. But just as there have been advances in the sciences of cognition and learning, there have been significant developments in methods of measurement over the last several decades. A wide array of newer models and methods are available that can better capture the complexities of learning as it is now understood.

Taken together, developments from the sciences of cognition and measurement should serve as the scientific foundations of assessment. The knowledge accumulated in these fields can guide the determination of what observations it is sensible to undertake and what sense can be made of those observations when measuring student achievement.

Suggested Citation:"INTRODUCTION." National Research Council. 2001. Knowing What Students Know: The Science and Design of Educational Assessment. Washington, DC: The National Academies Press. doi: 10.17226/10019.
×

Five themes are the focus for the discussion of advances in the sciences of thinking and learning in this chapter:

  • Theories of learning and knowing have expanded substantially over the last 100 years. We briefly describe those shifts and their impact on assessment practices.

  • Current understanding of the nature of learning and knowledge details various fundamental components of the structures, processes, and contents of the human mind. Consideration is given to each of these components and their significance for understanding and assessing human knowledge and performance.

  • A hallmark of contemporary cognitive science is the study of how expertise is acquired in particular subject domains. The features of expertise are considered, together with research on the acquisition of expertise. We also examine those aspects of children’s development and learning that relate to the acquisition of subject matter expertise and that have implications for instruction and assessment.

  • Empirically based models of student knowledge and learning have been developed for multiple curricular areas. Examples are provided of detailed models that have been directly employed to support innovative instructional and assessment practices in specific academic domains.

  • The cognitive sciences are founded on rigorous empirical study of both simple and complex forms of cognition. Various methods of observation and inference used in the cognitive sciences to probe the nature of thinking are discussed because of their relevance to issues regarding the design of assessment tasks and methods of inference about what students know.

Suggested Citation:"INTRODUCTION." National Research Council. 2001. Knowing What Students Know: The Science and Design of Educational Assessment. Washington, DC: The National Academies Press. doi: 10.17226/10019.
×
Page 57
Suggested Citation:"INTRODUCTION." National Research Council. 2001. Knowing What Students Know: The Science and Design of Educational Assessment. Washington, DC: The National Academies Press. doi: 10.17226/10019.
×
Page 58
Next: 3 Advances in the Sciences of Thinking and Learning »
Knowing What Students Know: The Science and Design of Educational Assessment Get This Book
×

Education is a hot topic. From the stage of presidential debates to tonight's dinner table, it is an issue that most Americans are deeply concerned about. While there are many strategies for improving the educational process, we need a way to find out what works and what doesn't work as well. Educational assessment seeks to determine just how well students are learning and is an integral part of our quest for improved education.

The nation is pinning greater expectations on educational assessment than ever before. We look to these assessment tools when documenting whether students and institutions are truly meeting education goals. But we must stop and ask a crucial question: What kind of assessment is most effective?

At a time when traditional testing is subject to increasing criticism, research suggests that new, exciting approaches to assessment may be on the horizon. Advances in the sciences of how people learn and how to measure such learning offer the hope of developing new kinds of assessments-assessments that help students succeed in school by making as clear as possible the nature of their accomplishments and the progress of their learning.

Knowing What Students Know essentially explains how expanding knowledge in the scientific fields of human learning and educational measurement can form the foundations of an improved approach to assessment. These advances suggest ways that the targets of assessment-what students know and how well they know it-as well as the methods used to make inferences about student learning can be made more valid and instructionally useful. Principles for designing and using these new kinds of assessments are presented, and examples are used to illustrate the principles. Implications for policy, practice, and research are also explored.

With the promise of a productive research-based approach to assessment of student learning, Knowing What Students Know will be important to education administrators, assessment designers, teachers and teacher educators, and education advocates.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!