Cover Image

PAPERBACK
$59.95



View/Hide Left Panel

plasia and fibrocystic breast disease (Eskin, 1977; Ghent et al., 1993). In vitro studies show that iodine can work with myeloperoxidase from white cells to inactivate bacteria (Klebanoff, 1967). Other brief reports have suggested that inadequate iodine nutrition impairs immune response and may be associated with an increased incidence of gastric cancer (Venturi et al., 1993). While these other possibilities deserve further investigation, the overwhelming importance of nutritional iodine is as a component of the thyroid hormones.

Physiology of Absorption, Metabolism, and Excretion

Iodine is ingested in a variety of chemical forms. Most ingested iodine is reduced in the gut and absorbed almost completely (Nath et al., 1992). Some iodine-containing compounds (e.g., thyroid hormones and amiodarone) are absorbed intact. The metabolic pathway of iodinated radiocontrast media, such as Lipiodol, is not entirely clear. The oral administration of Lipiodol increases the iodine stores of the organism and has been successfully used in the correction of iodine deficiency (Benmiloud et al., 1994). Iodate, widely used in many countries as an additive to salt, is rapidly reduced to iodide and completely absorbed.

Once in the circulation, iodide is removed principally by the thyroid gland and the kidney. The thyroid selectively concentrates iodide in amounts required for adequate thyroid hormone synthesis, and most of the remaining iodine is excreted in urine. Several other tissues can also concentrate iodine, including salivary glands, breast, choroid plexus, and gastric mucosa. Other than the lactating breast, these are minor pathways of uncertain significance.

A sodium/iodide transporter in the thyroidal basal membrane is responsible for iodine concentration. It transfers iodide from the circulation into the thyroid gland at a concentration gradient of about 20 to 50 times that of the plasma to ensure that the thyroid gland obtains adequate amounts of iodine for hormone synthesis. During iodine deficiency, the thyroid gland concentrates a majority of the iodine available from the plasma (Wayne et al., 1964).

Iodide in the thyroid gland participates in a complex series of reactions to produce thyroid hormones. Thyroglobulin, a large glycoprotein of molecular weight 660,000, is synthesized within the thyroid cell and serves as a vehicle for iodination. Iodide and thyroglobulin meet at the apical surface of the thyroid cell. There thyroperoxidase and hydrogen peroxide promote the oxidation of the iodide and its simultaneous attachment to tyrosyl residues within



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement