Cover Image


View/Hide Left Panel

Serum Thyroid Stimulating Hormone Concentration

Because serum TSH concentration responds to circulating levels of thyroid hormone, which in turn reflect adequate production of thyroid hormone, it is an excellent indicator of altered thyroid function in individuals. Sensitive assays have been widely available for about two decades, and serum TSH concentration is now the preferred test for assessing thyroid function in individuals. It is also used on blood spots by filter paper methodology in most countries for the routine screening of neonates to detect congenital hypothyroidism (WHO Nutrition Unit, 1994). The normal serum TSH concentration range in most assays is approximately 0.5 to 6.0 mU/ L, although each individual assay system needs to be standardized for euthyroid subjects. Studies of groups with differing iodine intakes, as reflected in urinary iodine concentrations, show different mean serum TSH concentrations, although they may remain within the normal range. The sensitivity of TSH can be enhanced by previous stimulation with TSH-releasing hormone (TRH) (Jackson, 1982). The latter is a hypothalamic tripeptide that stimulates release of TSH and prolactin. It is used clinically for individuals with borderline or confusing static TSH measurements; an exaggerated response to TRH suggests the threat of inadequate thyroid hormone availability and hypothyroidism. Several studies have shown that the mean serum TSH concentration and its response to TRH are increased in iodine deficiency, although absolute values may remain within the normal range (Benmiloud et al., 1994; Buchinger et al., 1997; Emrich et al., 1982; Moulopoulos et al., 1988).

Serum Thyroglobulin Concentration

Although principally an intrathyroidal and follicular resident, some thyroglobulin (Tg) is normally secreted into the circulation and is detectable by standardized commercially available immunoassays. The largest clinical use of the serum Tg concentration is in detecting metastases of differentiated thyroid cancer, but it is typically elevated in thyroidal hyperplasia from any cause, including the endemic goiter of iodine deficiency. Many studies have shown a correlation between serum Tg concentration and degree of iodine deficiency as shown by urinary iodine excretion or other parameters (Benmiloud et al., 1994; Gutekunst et al., 1986). It is applicable to blood spot filter paper technology (Missler et al., 1994). Individuals with adequate iodine intake have a median serum Tg concentration of 10 ng/mL (WHO Nutrition Unit, 1994; WHO/UNICEF/ICCIDD,

The National Academies of Sciences, Engineering, and Medicine
500 Fifth St. N.W. | Washington, D.C. 20001

Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement