Cover Image

PAPERBACK
$59.95



View/Hide Left Panel

9
Iron

SUMMARY

Iron functions as a component of a number of proteins, including enzymes and hemoglobin, the latter being important for the transport of oxygen to tissues throughout the body for metabolism. Factorial modeling was used to determine the Estimated Average Requirement (EAR) for iron. The components of iron requirement used as factors in the modeling include basal iron losses, menstrual losses, fetal requirements in pregnancy, increased requirement during growth for the expansion of blood volume, and/or increased tissue and storage iron. The Recommended Dietary Allowance (RDA) for all age groups of men and postmenopausal women is 8 mg/day; the RDA for premenopausal women is 18 mg/day. The median dietary intake of iron is approximately 16 to 18 mg/day for men and 12 mg/day for women. The Tolerable Upper Intake Level (UL) for adults is 45 mg/day of iron, a level based on gastrointestinal distress as an adverse effect.

BACKGROUND INFORMATION

Almost two-thirds of iron in the body is found in hemoglobin present in circulating erythrocytes. A readily mobilizable iron store contains another 25 percent. Most of the remaining 15 percent is in the myoglobin of muscle tissue and a variety of enzymes necessary for oxidative metabolism and many other functions in all cells. A 75-kg adult man contains about 4 grams of iron (50 mg/kg) while a



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement



Below are the first 10 and last 10 pages of uncorrected machine-read text (when available) of this chapter, followed by the top 30 algorithmically extracted key phrases from the chapter as a whole.
Intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text on the opening pages of each chapter. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

Do not use for reproduction, copying, pasting, or reading; exclusively for search engines.

OCR for page 290
Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc 9 Iron SUMMARY Iron functions as a component of a number of proteins, including enzymes and hemoglobin, the latter being important for the transport of oxygen to tissues throughout the body for metabolism. Factorial modeling was used to determine the Estimated Average Requirement (EAR) for iron. The components of iron requirement used as factors in the modeling include basal iron losses, menstrual losses, fetal requirements in pregnancy, increased requirement during growth for the expansion of blood volume, and/or increased tissue and storage iron. The Recommended Dietary Allowance (RDA) for all age groups of men and postmenopausal women is 8 mg/day; the RDA for premenopausal women is 18 mg/day. The median dietary intake of iron is approximately 16 to 18 mg/day for men and 12 mg/day for women. The Tolerable Upper Intake Level (UL) for adults is 45 mg/day of iron, a level based on gastrointestinal distress as an adverse effect. BACKGROUND INFORMATION Almost two-thirds of iron in the body is found in hemoglobin present in circulating erythrocytes. A readily mobilizable iron store contains another 25 percent. Most of the remaining 15 percent is in the myoglobin of muscle tissue and a variety of enzymes necessary for oxidative metabolism and many other functions in all cells. A 75-kg adult man contains about 4 grams of iron (50 mg/kg) while a

OCR for page 290
Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc menstruating woman has about 40 mg/kg of iron because of her smaller erythrocyte mass and iron store (Bothwell et al., 1979). Function Iron can exist in oxidation states ranging from –2 to +6. In biological systems, these oxidation states occur primarily as the ferrous (+2), ferric (+3), and ferryl (+4) states. The interconversion of iron oxidation states is a mechanism whereby iron participates in electron transfer, as well as a mechanism whereby iron can reversibly bind ligands. The common biological ligands for iron are oxygen, nitrogen, and sulfur atoms. Four major classes of iron-containing proteins exist in the mammalian system: iron-containing heme proteins (hemoglobin, myoglobin, cytochromes), iron-sulfur enzymes (flavoproteins, hemeflavoproteins), proteins for iron storage and transport (transferrin, lactoferrin, ferritin, hemosiderin), and other iron-containing or activated enzymes (sulfur, nonheme enzymes). In iron sulfur enzymes, iron is bound to sulfur in one of four possible arrangements (Fe-S, 2Fe-2S, 4Fe-4S, 3Fe-4S proteins). In heme proteins, iron is bound to porphyrin ring structures with various side chains. In humans, the predominant form of heme is protoporphyrin-IX. Hemoglobin The movement of oxygen from the environment to the tissues is one of the key functions of iron. Oxygen is bound to an iron-containing porphyrin ring, either as part of the prosthetic group of hemoglobin within erythrocytes or as part of myoglobin as the facilitator of oxygen diffusion in tissues. Myoglobin Myoglobin is located in the cytoplasm of muscle cells and increases the rate of diffusion of oxygen from capillary erythrocytes to the cytoplasm and mitochondria. The concentration of myoglobin in muscle is drastically reduced in tissue iron deficiency, thus limiting the rate of diffusion of oxygen from erythrocytes to mitochondria (Dallman, 1986a). Cytochromes The cytochromes contain heme as the active site with the iron-

OCR for page 290
Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc containing porphyrin ring functioning to reduce ferric iron to ferrous iron. Cytochromes act as electron carriers. The 40 different proteins that constitute the respiratory chain contain six different heme proteins, six with iron sulfur centers, two with copper centers, and ubiquinone to connect nicotinamide adenine dinucleotide hydride to oxygen. Physiology of Absorption, Metabolism, and Excretion Absorption The iron content of the body is highly conserved. In the absence of bleeding (including menstruation) or pregnancy, only a small quantity is lost each day (Bothwell et al., 1979). Adult men need to absorb only about 1 mg/day to maintain iron balance. The average requirement for menstruating women is somewhat higher, approximately 1.5 mg/day. There is, however, a marked interindividual variation in menstrual losses, and a small proportion of women must absorb as much as 3.4 mg/day. Towards the end of pregnancy, the absorption of 4 to 5 mg/day is necessary to preserve iron balance. Requirements are also higher in childhood, particularly during periods of rapid growth in early childhood (6 to 24 months), and adolescence. In the face of these varying requirements, iron balance is maintained by the regulation of absorption in the upper small intestine (Bothwell et al., 1979). There are two pathways for the absorption of iron in humans. One mediates the uptake of the small quantity of heme iron derived primarily from hemoglobin and myoglobin in meat. The other allows for the absorption of nonheme iron, primarily as iron salts, that can be extracted from plant and dairy foods and rendered soluble in the lumen of the stomach and duodenum. Absorption of nonheme iron is enhanced by substances, such as ascorbic acid, that form low molecular weight iron chelates. Most of the iron consumed by humans is in the latter nonheme form. Heme iron is highly bioavailable and little affected by dietary factors. Nonheme iron absorption depends on the solubilization of predominately ferric food iron in the acid milieu of the stomach (Raja et al., 1987; Wollenberg and Rummel, 1987) and reduction to the ferrous form by compounds such as ascorbic acid or a ferri-reductase present at the musosal surfaces of cells in the duodenum (Han et al., 1995; Raja et al., 1993). This bioavailable iron is then absorbed in a three-step process in which the iron is taken up by the enterocytes across the cellular apical membrane by an energy-

OCR for page 290
Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc dependent, carrier-mediated process (Muir and Hopfer, 1985; Simpson et al., 1986), transported intracellularly, and transferred across the basolateral membrane into the plasma. The duodenal mucosal cells involved in iron absorption are formed in the crypts of Lieberkuhn. They then migrate up the villi becoming functional iron-absorbing cells only when they reach the tips of the villi. After a brief period of functionality, the cells are shed into the lumen together with iron that had entered the cell but had not been transferred to the plasma. In humans, mucosal cell turnover takes between 48 and 72 hours. Cells are programmed to regulate iron absorption when they reach tips of the villi by the amount of iron that they acquire from plasma during their early development. Recent studies by Cannone-Hergaux and coworkers (1999) strongly suggest that a metal transporter (divalent metal transporter [DMT-1] protein), which is a transmembrane protein and an isoform of natural resistance associated macrophage protein (NRAMP2), mediates the uptake of elemental iron into the duodenal cells. The quantity of this transport protein that is formed is inversely proportional to the iron content of the cell; synthesis is regulated by posttranscriptional modification of the DMT-1 messenger ribonucleic acid (mRNA) (Conrad and Umbreit, 2000). The regulatory mechanism involves the cellular iron response proteins (IRP) and the iron response element (IRE) on the mRNA (Eisenstein, 2000). The mechanism by which iron is transported through the enterocyte has not been completely elucidated. Absorbed iron in the intracellular “labile iron pool” is delivered to the basolateral surface of enterocytes, becomes available for binding onto transferrin, and is then transported via transferrin in the plasma to all body cells. Ceruloplasmin, a copper-containing protein, facilitates the binding of ferric iron to transferrin via ferroxidase activity at the basolateral membrane (Osaki et al., 1966; Wollenberg et al., 1990). Heme is soluble in an alkaline environment and is less affected by intraluminal factors that influence nonheme iron uptake. Specific transporters exist for heme on the surface of rat enterocytes (Conrad et al., 1967; Grasbeck et al., 1982); however, rats do not absorb heme iron as efficiently as do humans (Weintraub et al., 1965). To date, no specific receptor/transporter for heme has been identified in humans. After binding to its receptor, the heme molecule is internalized and degraded to iron, carbon monoxide, and bilirubin IXa by the enzyme heme oxygenase (Bjorn-Rasmussen et al., 1974; Raffin et al., 1974). This enzyme is induced by iron deficiency (Raffin et al., 1974). It is thought that the iron that is liberated from

OCR for page 290
Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc heme enters the common intracellular (enterocyte) pool of iron before being transported to plasma transferrin. Transport and Metabolism Iron movement between cells is primarily conducted via reversible binding of iron to the transport protein, transferrin. One atom of iron can bind to each of two binding sites on transferrin and will then complex with a highly specific transferrin receptor (TfR) located on the plasma membrane surfaces of cells. Internalization of transferrin in clathrin-coated pits results in an endosomal vesicle where acidification to a pH of approximately 5.5 results in the release of the iron from transferrin. The movement of iron from this endosomal space to the cytoplasm is not completely understood at this time, but recent discoveries provide some clues. DMT1 (NRAMP2) has now been identified in endosomal vesicles (Gunshin et al., 1997). Although it is not a specific iron transporter and although it is capable of transporting other divalent metals, recent studies suggest that it may play a primary role in the delivery of iron to the cell. A second transporter, stimulator of iron transport (SFT), has been cloned and characterized as an exclusive iron transporter of both ferric and ferrous iron out of the endosome (Gutierrez et al., 1997). Iron entering cells may be incorporated into functional compounds, stored as ferritin, or used to regulate future cellular iron metabolism by modifying the activity of the two IRPs. The size of the intracellular iron pool plays a clear regulatory role in the synthesis of iron storage, iron transport, and iron metabolism proteins through an elegant posttranscriptional set of events (see review by Eisenstein and Blemings, 1998). Storage Intracellular iron availability is regulated by the increased expression of cellular TfR concentration by iron-deficient cells and increased ferritin production when the iron supply exceeds the cell’s functional needs. Iron is stored in the form of ferritin or hemosiderin. The latter is a water-insoluble degradation product of ferritin. The iron content of hemosiderin is variable but generally higher than that of ferritin. While all cells are capable of storing iron, the cells of the liver, spleen, and bone marrow are the primary iron storage sites in humans.

OCR for page 290
Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc Excretion In the absence of bleeding (including menstruation) or pregnancy, only a small quantity of iron is lost each day (Bothwell et al., 1979). Body iron is therefore highly conserved. Daily basal iron losses are limited to between 0.90 and 1.02 mg/day in nonmenstruating women (Green et al., 1968). The majority of absorbed iron is lost in the feces. Daily iron losses from urine, gastrointestinal tract, and skin are approximately 0.08, 0.6, and 0.2 to 0.3 mg/day, respectively. These basal losses may drop to 0.5 mg/day in iron deficiency and may be as high as 2 mg/day in iron overload (Bothwell et al., 1979). Menstrual iron losses are quite variable. Studies on Swedish and British women demonstrated a mean iron loss via menses of 0.6 to 0.7 mg/day (Hallberg et al., 1966b). Clinical Effects of Inadequate Intake Important subclinical and clinical consequences of iron deficiency are impaired physical work performance, developmental delay, cognitive impairment, and adverse pregnancy outcomes. Several other clinical consequences have also been described. The bulk of experimental and epidemiological evidence in humans suggests that functional consequences of iron deficiency (related both to anemia and tissue iron concentration) occur only when iron deficiency is of a severity sufficient to cause a measurable decrease in hemoglobin concentration. Once the degree of iron deficiency is sufficiently severe to cause anemia, functional disabilities become evident. It is difficult to determine whether any particular functional abnormality is a specific consequence of the anemia per se, presumably due to impaired oxygen delivery, or the result of concomitant tissue iron deficiency. However, it has been shown that anemia and tissue iron deficiency exert independent effects on skeletal muscle (Davies et al., 1984; Finch et al., 1976). Anemia primarily affects maximal oxygen consumption. Endurance exercise is markedly impaired by intracellular iron deficiency in the muscle cells (Willis et al., 1988). From a practical point of view, the distinction may be relatively unimportant since anemia and tissue iron deficiency develop simultaneously in humans who suffer from nutritional iron deficiency. Work Performance Various factors may contribute to impaired work performance

OCR for page 290
Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc with iron deficiency. It has been shown that anemia and tissue iron deficiency exert independent effects on the function of organs such as skeletal muscle (Davies et al., 1984; Finch et al., 1976). Anemia primarily affects maximal oxygen consumption. Mild anemia reduces performance during brief but intense exercise (Viteri and Torun, 1974) because of the impaired capacity of skeletal muscle for oxidative metabolism. Endurance exercise is more markedly impaired by intracellular iron deficiency in skeletal muscle cells (Willis et al., 1988). In laboratory animals, the depletion of oxidative enzymes in skeletal muscle occurs more gradually than the development of anemia (Dallman et al., 1982). The significant decrease in myoglobin and other iron-containing proteins in skeletal muscle of laboratory animals contributes significantly to the decline in muscle aerobic capacity in iron-deficiency anemia and may be a more important factor contributing to the limitation in endurance capacity (Dallman, 1986a; Siimes et al., 1980a). One study used 31P nuclear magnetic resonance spectroscopy to examine the functional state of bioenergetics in iron-deficient and iron-replete rat gastrocnemius muscle at rest and during 10 seconds of contraction (Thompson et al., 1993). Compared to controls, muscle from iron-deficient animals had a marked increase in muscle phosphocreatine breakdown and a decrease in pH and a slower recovery of phosphocreatine and inorganic phosphate concentrations after exercise. During repletion for 2 to 7 days with iron dextran, there was no substantial improvement in these indicators of muscle mitochondrial energetics. These authors concluded that “tissue factors” such as reduced mitochondrial enzyme activity, decreased number of mitochondria, and altered morphology of the mitochondria might be responsible for impaired muscle function. Cognitive Development and Intellectual Performance Studies of iron deficiency anemia and behavior in the developing human and in animal models suggest persistent functional changes. Investigators have demonstrated lower mental and motor test scores and behavioral alterations in infants with iron deficiency anemia (Idjradinata and Pollitt, 1993; Lozoff et al., 1982a, 1982b, 1985, 1987, 1996; Nokes et al., 1998; Walter et al., 1989). In studies conducted in Guatemala and Costa Rica, infants with iron deficiency anemia were rated as more wary and hesitant and maintained closer proximity to caregivers (Lozoff et al., 1985, 1986). Several studies have shown an improvement in either motor or

OCR for page 290
Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc cognitive development according to Bayley’s scale of mental development after iron treatment of iron-deficient infants (Idjradinata and Pollitt, 1993; Lozoff et al., 1987; Oski et al., 1983; Walter et al., 1983). Other studies have failed to show an improvement in either motor or cognitive development scores after providing iron supplements to iron-deficient infants (Lozoff et al., 1982a, 1982b, 1987, 1996; Walter et al., 1989). Lower arithmetic and writing scores, poorer motor functioning, and impaired cognitive processes (memory and selective recall) have been documented in children who were anemic during infancy and were treated with iron (Lozoff et al., 1991, 2000). Specific central nervous system processes (e.g., slower nerve conduction and impaired memory) appear to remain despite correction of the iron deficiency anemia. There is a general lack of specificity of effect and of information about which brain regions are adversely affected. Recent data from Chile showed a decreased nerve conduction velocity in response to an auditory signal in formerly iron-deficient anemic children despite hematologic repletion with oral iron therapy (Roncagliolo et al., 1998). This is strongly suggestive evidence for decreased myelination of nerve fibers, though other explanations could also exist. Current thinking about the impact of early iron deficiency anemia attributes some role for “functional isolation,” a paradigm in which the normal interaction between stimulation and learning from the physical and social environment is altered (Pollitt et al., 1993; Strupp and Levitsky, 1995). Adverse Pregnancy Outcomes Increased perinatal maternal mortality is associated with anemia in women when the anemia is severe (hemoglobin < 40 g/L) (Allen, 1997, 2000; WHO, 1992; Williams and Wheby, 1992). However, even moderate anemia (hemoglobin < 80 g/L) has been associated with a two-fold risk of maternal death (Butler and Bonham, 1963). The mechanisms associated with higher mortality of anemic women are not well understood. Heart failure, hemorrhage, and infection have been identified as possible causes (Fleming, 1968; Taylor et al., 1982). Several large epidemiological studies have demonstrated that maternal anemia is associated with premature delivery, low birth weight, and increased perinatal infant mortality (see Table 9-1) (Allen, 1997; Garn et al., 1981; Klebanoff et al., 1991; Lieberman et al., 1988; Murphy et al., 1986; Williams and Wheby, 1992). Some of

OCR for page 290
Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc TABLE 9-1 Association of Anemia and Iron Deficiency with Inadequate Weight Gain and Pregnancy Outcome   Anemiaa Outcome Total Iron Deficiency Causes Other Than Iron Deficiency No Anemia Low birth weight Unadjusted, %b 17.1 25.9 15.9 12.2 AORc 1.55 3.10 1.34 1.00 95% confidence interval 0.96–2.51 1.16–4.39 0.80–2.22 — Preterm delivery Unadjusted, % 26.2 44.4 23.5 18.4 AORc 1.30 2.66 1.16 1.00 95% confidence interval 0.86–2.24 1.15–6.17 0.76–1.79 — Small for gestational age Unadjusted, % 11.1 8.3 11.5 7.5 AORd 1.66 1.24 1.67 1.00 95% confidence interval 0.90–3.04 0.29–6.94 0.90–3.41 — Inadequate weight gain Unadjusted, % 31.0 40.0 29.9 24.6 AORe 1.62 2.67 1.51 1.00 95% confidence interval 1.10–2.36 1.13–6.30 1.02–2.25 — a Anemia is defined as a hemoglobin concentration < 110 g/L (first trimester), < 105 g/ L (second trimester), < 110 g/L (third trimester), and a serum ferritin concentration < 12 μg/L (CDC, 1989; IOM, 1990). b Percent of anemic women at entry into study. c AOR = adjusted odds ratio. Adjusted for maternal age, parity, ethnicity, prior low-birth-weight or preterm delivery, bleeding at entry into study, gestation at initial blood draw taken at entry into study, number of cigarettes smoked per day, and prepregnancy body mass index. d Adjusted for maternal age, parity, prior low-birth-weight delivery, bleeding at entry into study, gestation at initial blood draw taken at entry into study, number of cigarettes smoked per day, and prepregnancy body mass index. e Adjusted for maternal age, parity, ethnicity, bleeding at entry into study, gestation at initial blood draw (entry), and prepregnancy body mass index. SOURCE: Scholl et al. (1992).

OCR for page 290
Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc these studies have been criticized because maternal hemoglobin concentration was measured only at the time of delivery. Physiological factors cause the maternal hemoglobin concentration to rise shortly before delivery. Delivery, occurring early because of known or unknown factors unrelated to anemia, could therefore be expected to show an association with a lower hemoglobin concentration even though anemia played no causal role. Other surveys have shown the association to be present even when hemoglobin concentration was measured earlier in pregnancy. In one recent prospective study, only anemia resulting from iron deficiency was associated with premature labor (Scholl et al., 1992). Furthermore, Goepel and coworkers (1988) reported that premature labor was four times more frequent in women with serum ferritin concentrations below 20 μg/L than in those with higher ferritin concentrations, irrespective of hemoglobin concentration. High hemoglobin concentrations at the time of delivery are also associated with adverse pregnancy outcomes, such as the newborn infant being small for gestational age (Yip, 2000). Therefore, there is a U-shaped relationship between hemoglobin concentration and prematurity, low birth weight, and fetal death, the risk being increased for hemoglobin concentration below 90 g/L or above 130 g/L. The etiological factors are different, however, at each end of the spectrum. Iron deficiency appears to play a causal role in the presence of significant anemia by limiting the expansion of the maternal erythrocyte cell mass. On the other hand, elevated hemoglobin concentration probably reflects a decreased plasma volume associated with maternal hypertension and eclampsia. Both of the latter conditions have an increased risk of poor fetal outcome (Allen, 1993; Hallberg, 1992; Williams and Wheby, 1992). Fetal requirements for iron appear to be met at the expense of the mother’s needs, but the iron supply to the fetus may still be suboptimal. Several studies suggest that severe maternal anemia is associated with lower iron stores in infants evaluated either at the time of delivery by measuring cord blood ferritin concentration or later in infancy. The effect of maternal iron deficiency on infant status has been reviewed extensively by Allen (1997). While the observations relating iron status of the mother to the size of stores in infants (based on serum ferritin concentration) are important, it should be noted that the total iron endowment in a newborn infant is directly proportional to birth weight (Widdowson and Spray, 1951). Maternal iron deficiency anemia may therefore limit the infant’s iron endowment specifically through an association with premature delivery and low birth weight. Preziosi and

OCR for page 290
Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc coworkers (1997) evaluated the effect of iron supplementation during pregnancy on iron status in newborn babies born to women living in Niger. The prevalence of maternal anemia was 65 to 70 percent at 6 months gestation. The iron status of the infants was also evaluated at 3 and 6 months of age. Although there were no differences between the supplemented and unsupplemented women in cord blood iron indexes at both 3 and 6 months of age, the children born to iron-supplemented women had significantly higher serum ferritin concentrations. Furthermore, it was reported that Apgar scores were significantly higher in infants born to supplemented mothers. There were a total of eight fetal or neonatal deaths, seven in the unsupplemented group. Other Consequences of Iron Deficiency With use of in vitro tests and animal models, iron deficiency is associated with impaired host defense mechanisms against infection such as cell-mediated immunity and phagocytosis (Cook and Lynch, 1986). The clinical relevance of these findings is uncertain although iron deficiency may be a predisposing factor for chronic mucocutaneous candidiasis (Higgs, 1973). Iron deficiency is also associated with abnormalities of the mucosa of the mouth and gastrointestinal tract leading to angular stomatitis, glossitis, esophageal webs, and chronic gastritis (Jacobs, 1971). Spoon-shaped fingernails (koilonychia) may be present (Hogan and Jones, 1970). The eating of nonfood material (pica) or a craving for ice (pagophagia) are also associated with iron deficiency (Ansell and Wheby, 1972). Finally, temperature regulation may be abnormal in iron deficiency anemia (Brigham and Beard, 1996). SELECTION OF INDICATORS FOR ESTIMATING THE REQUIREMENT FOR IRON Functional Indicators The most important functional indicators of iron deficiency are reduced physical work capacity, delayed psychomotor development in infants, impaired cognitive function, and adverse effects for both the mother and the fetus as discussed above. As indicated earlier, these adverse consequences of iron deficiency are associated with a degree of iron deficiency sufficient to cause measurable anemia. A specific functional indicator, such as dark adaptation for vitamin A (see Chapter 4), is used to estimate the average requirement

OCR for page 290
Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc Fairweather-Tait S, Wharf SG, Fox TE. 1995b. Zinc absorption in infants fed ironfortified weaning food. Am J Clin Nutr 62:785–789. FAO/WHO (Food and Agriculture Organization of the United Nations/World Health Organization). 1988. Requirements of Vitamin A, Iron, Folate and Vitamin B12. FAO Food and Nutrition Series No. 23. Rome: FAO. Pp. 33–50. Farquhar JD. 1963. Iron supplementation during first year of life. Am J Dis Child 106:201–206. FDA (Food and Drug Administration). 1997. Preventing Iron Poisoning in Children. FDA Backgrounder. [Online]. Available: http://www.fda.gov/opacom/backgrounders/ironbg.html [accessed July 1999]. Feder JN. 1999. The hereditary hemochromatosis gene (HFE): A MHC class I-like gene that functions in the regulation of iron homeostasis. Immunol Res 20:175–185. Ferguson BJ, Skikne BS, Simpson KM, Baynes RD, Cook JD. 1992. Serum transferrin receptor distinguishes the anemia of chronic disease from iron deficiency anemia. J Lab Clin Med 119:385–390. Finch CA, Huebers H. 1982. Perspectives in iron metabolism. N Engl J Med 306:1520–1528. Finch CA, Miller LR, Inamdar AR, Person R, Seiler K, Mackler B. 1976. Iron deficiency in the rat. Physiological and biochemical studies of muscle dysfunction. J Clin Invest 58:447–453. Fleming AF. 1968. Hypoplastic anaemia in pregnancy. J Obstet Gynaecol Br Commonw 75:138–141. Fogelholm M. 1995. Inadequate iron status in athletes: An exaggerated problem? In: Kies CV, Driskell JA, eds. Sports Nutrition: Minerals and Electrolytes. Boca Raton: CRC Press. Pp. 81–95. Fomon SJ, Ziegler EE, Nelson SE. 1993. Erythrocyte incorporation of ingested 58Fe by 56-day-old breast-fed and formula-fed infants. Pediatr Res 33:573–576. Ford ES, Cogswell ME. 1999. Diabetes and serum ferritin concentration among U.S. adults. Diabetes Care 22:1978-1983. Franco RF, Zago MA, Trip MD, ten Cate H, van den Ende A, Prins MH, Kastelein JJ, Reitsma PH. 1998. Prevalence of hereditary haemochromatosis in premature atherosclerotic vascular disease. Br J Haematol 102:1172–1175. Frey GH, Krider DW. 1994. Serum ferritin and myocardial infarct. WV Med J 90:13–15. Frisancho AR. 1990. Anthropometric Standards for the Assessment of Growth and Nutritional Status. Ann Arbor: University of Michigan Press. Frykman E, Bystrom M, Jansson U, Edberg A, Hansen T. 1994. Side effects of iron supplements in blood donors: Superior tolerance of heme iron. J Lab Clin Med 123:561–564. Fuerth JH. 1972. Iron supplementation of the diet in full-term infants: A controlled study. J Pediatr 80:974–979. Fung EB, Ritchie LD, Woodhouse LR, Roehl R, King JC. 1997. Zinc absorption in women during pregnancy and lactation: A longitudinal study. Am J Clin Nutr 66:80–88. Garby L, Sjolin S, Vuille JC. 1964. Studies on erythro-kinetics in infancy. IV. The long-term behaviour of radioiron in circulating foetal and adult haemoglobin and its faecal excretion. Acta Paediatr Scand 53:33–41. Garby L, Irnell L, Werner I. 1969. Iron deficiency in women of fertile age in a Swedish community. II. Efficiency of several laboratory tests to predict the response to iron supplementation. Acta Med Scand 185:107–111.

OCR for page 290
Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc Garn SM, Ridella SA, Petzold AS, Falkner F. 1981. Maternal hematologic levels and pregnancy outcomes. Sem Perinatol 5:155–162. Garry P, Koehler KM, Simon TL. 1995. Iron stores and iron absorption: Effects of repeated blood donations. Am J Clin Nutr 62:611–620. Garza C, Johnson CA, Smith EO, Nichols BL. 1983. Changes in the nutrient composition of human milk during gradual weaning. Am J Clin Nutr 37:61–65. Gillooly M, Bothwell TH, Torrance JD, MacPhail AP, Derman DP, Bezwoda WR, Mills W, Charlton RW, Mayet F. 1983. The effects of organic acids, phytates and polyphenols on the absorption of iron from vegetables. Br J Nutr 49:331–342. Gillooly M, Bothwell TH, Charlton RW, Torrance JD, Bezwoda WR, MacPhail AP, Derman DP, Novelli L, Morrall P, Mayet F. 1984. Factors affecting the absorption of iron from cereals. Br J Nutr 51:37–46. Goepel E, Ulmer HU, Neth RD. 1988. Premature labor contractions and the value of serum ferritin during pregnancy. Gynecol Obstet Invest 26:265–273. Gordeuk V, Mukiibi J, Hasstedt SJ, Samowitz W, Edwards CQ, West G, Ndambire S, Emmanual J, Nkanza N, Chapanduka Z, Randall M, Boone P, Romano P, Martell RW, Yamashita T, Effler P, Brittenham G. 1992. Iron overload in Africa. Interaction between a gene and dietary iron content. N Engl J Med 326:95–100. Grasbeck R, Majuri R, Kouvonen I, Tenhunen R. 1982. Spectral and other studies on the intestinal haem receptor of the pig. Biochim Biophys Acta 700:137–142. Green R, Charlton R, Seftel H, Bothwell T, Mayet F, Adams B, Finch C, Layrisse M. 1968. Body iron excretion in man. Am J Med 45:336–353. Gunshin H, Mackenzie B, Berger UV, Gunshin Y, Romero MF, Boron WF, Nussberger S, Gollan JL, Hediger MA. 1997. Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 388:482–488. Gutierrez JA, Yu J, Rivera S, Wessling-Resnick M. 1997. Functional expression cloning and characterization of SFT, a stimulator of Fe transport. J Cell Biol 139:895–905. Hallberg L. 1992. Iron balance in pregnancy and lactation. In: Fomon SJ, Zlotkin S, eds. Nutritional Anemias. Nestle Nutrition Workshop Series, Vol. 30. New York: Raven Press. Pp. 13–28. Hallberg L, Hulthen L. 2000. Prediction of dietary iron absorption: An algorithm for calculating absorption and bioavailability of dietary iron. Am J Clin Nutr 71:1147–1160. Hallberg L, Rossander-Hulthen L. 1991. Iron requirements in menstruating women. Am J Clin Nutr 54:1047–1058. Hallberg L, Hogdahl AM, Nilsson L, Rybo G. 1966a. Menstrual blood loss and iron deficiency. Acta Med Scand 180:639–650. Hallberg L, Hogdahl AM, Nilsson L, Rybo G. 1966b. Menstrual blood loss: A population study. Variation at different ages and attempts to define normality Acta Obstet Gynecol Scand 45:320–351. Hallberg L, Ryttinger L, Solvell L. 1966c. Side-effects of oral iron therapy. A double-blind study of different iron compounds in tablet form. Acta Med Scand Suppl 459:3–10. Hallberg L, Brune M, Erlandsson M, Sandberg AS, Rossander-Hulthen L. 1991. Calcium: Effect of different amounts of nonheme- and heme-iron absorption in humans. Am J Clin Nutr 53:112–119. Hallberg L, Rossander-Hulthen L, Brune M, Gleerup A. 1993. Inhibition of haemiron absorption in man by calcium. Br J Nutr 69:533–540.

OCR for page 290
Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc Hallfrisch J, Powell A, Carafelli C, Reiser S, Prather ES. 1987. Mineral balances of men and women consuming high fiber diets with complex or simple carbohydrate. J Nutr 117:48–55. Han O, Failla ML, Hill AD, Morris ER, Smith JC. 1995. Reduction of Fe(III) is required for uptake of nonheme iron by Caco-2 cells. J Nutr 125:1291–1299. Harland BF, Oberleas D. 1987. Phytate in foods. World Rev Nutr Diet 52:235–259. Hawkins WW. 1964. Iron, copper and cobalt. In: Beaton GH, McHenry EW, eds. Nutrition: A Comprehensive Treatise. New York: Academic Press. Pp. 309–372. Haycock GB, Schwartz GJ, Wisotsky DH. 1978. Geometric method for measuring body surface area: A height-weight formula validated in infants, children, and adults. J Pediatr 93:62–66. Hefnawi F, Yacout MM. 1978. Intrauterine contraception in developing countries. In: Ludwig H, Tauber PF, eds. Human Fertilization. Stuttgart: Georg Thieme. Pp. 249–253. Hefnawi F, el-Zayat AF, Yacout MM. 1980. Physiologic studies of menstrual blood loss. Int J Gynaecol Obstet 17:348–352. Hegenauer J, Saltman P, Ludwig D, Ripley L, Ley A. 1979. Iron-supplemented cow milk. Identification and spectral properties of iron bound to casein micelles. J Agric Food Chem 27:1294–1301. Hegsted DM. 1975. Balance studies. J Nutr 106:307–311. Higgs JM. 1973. Chromic mucocutaneous candidiasis: Iron deficiency and the effects of iron therapy. Proc R Soc Med 66:802–804. Hogan GR, Jones B. 1970. The relationship of koilonychia and iron deficiency in infants. J Pediatr 77:1054–1057. Holbrook JT, Smith JC, Reiser S. 1989. Dietary fructose or starch: Effects on copper, zinc, iron, manganese, calcium, and magnesium balances in humans. Am J Clin Nutr 49:1290–1294. Hsing AW, McLaughlin JK, Olsen JH, Mellemkjar L, Wacholder S, Fraumeni JF. 1995. Cancer risk following primary hemochromatosis: A population-based cohort study in Denmark. Int J Cancer 60:160–162. Hunt JR, Roughead ZK. 1999. Nonheme-iron absorption, fecal ferritin excretion, and blood indexes of iron status in women consuming controlled lactoovovegetarian diets for 8 weeks. Am J Clin Nutr 69:944–952. Hunt JR, Mullen LM, Lykken GI, Gallagher SK, Nielsen FH. 1990. Ascorbic acid: Effect on ongoing iron absorption and status in iron-depleted young women. Am J Clin Nutr 51:649–655. Hurrell RF, Juillerat MA, Reddy MB, Lynch SR, Dassenko SA, Cook JD. 1992. Soy protein, phytate and iron absorption in humans. Am J Clin Nutr 56:573–578. Hytten FE, Leitch I. 1971. The Physiology of Human Pregnancy, 2nd ed. Oxford: Blackwell Scientific. Idjradinata P, Pollitt E. 1993. Reversal of developmental delays in iron-deficient anaemic infants treated with iron. Lancet 341:1–4. INACG (International Nutritional Anemia Consultative Group). 1985. Measurements of Iron Status. Washington, DC: Nutrition Foundation. IOM (Institute of Medicine). 1990. Nutrition During Pregnancy. Washington, DC: National Academy Press. IOM. 1993. Iron Deficiency Anemia: Recommended Guidelines for the Prevention, Detection, and Management Among U.S. Children and Women of Childbearing Age. Washington, DC: National Academy Press. Ivaturi R, Kies C. 1992. Mineral balances in humans as affected by fructose, high fructose corn syrup and sucrose. Plant Foods Hum Nutr 42:143–151.

OCR for page 290
Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc Jacobs A. 1971. The effect of iron deficiency on the tissues. Gerontol Clin (Basel) 13:61–68. Johnson MA, Baier MJ, Greger JL. 1982. Effects of dietary tin on zinc, copper, iron, manganese, and magnesium metabolism of adult males. Am J Clin Nutr 35:1332–1338. Kelly KA, Turnbull A, Cammock EE, Bombeck CT, Nyhus LM, Finch CA. 1967. Iron absorption after gastrectomy: An experimental study in the dog. Surgery 62:356–360. Kelsay JL, Behall KM, Prather ES. 1979. Effect of fiber from fruits and vegetables on metabolic responses of human subjects. Am J Clin Nutr 32:1876–1880. Kiechl S, Willeit J, Egger G, Poewe W, Oberhollenzer F. 1997. Body iron stores and the risk of carotid atherosclerosis: Prospective results from the Bruneck Study. Circulation 96:3300–3307. Klebanoff MA, Shiono PH, Selby JV, Trachtenberg AI, Graubard BI. 1991. Anemia and spontaneous preterm birth. Am J Obstet Gynecol 164:59–63. Konijn AM. 1994. Iron metabolism in inflammation. Baillieres Clin Haematol 7:829–849. Lampe JW, Slavin JL, Apple FS. 1991. Iron status of active women and the effect of running a marathon on bowel function and gastrointestinal blood loss. Int J Sports Med 12:173–179. Leggett BA, Brown NN, Bryant SJ, Duplock L, Powell LW, Halliday JW. 1990. Factors affecting the concentrations of ferritin in serum in a healthy Australian population. Clin Chem 36:1350–1355. Lemons JA, Moye L, Hall D, Simmons M. 1982. Differences in the composition of preterm and term human milk during early lactation. Pediatr Res 16:113–117. Liao Y, Cooper RS, McGee DL. 1994. Iron status and coronary heart disease: Negative findings from the NHANES I Epidemiologic Follow-Up Study. Am J Epidemiol 139:704–712. Lieberman E, Ryan KJ, Monson RR, Schoenbaum SC. 1988. Association of maternal hematocrit with premature labor. Am J Obstet Gynecol 159:107–114. Liguori L. 1993. Iron protein succinylate in the treatment of iron deficiency: Controlled, double-blind, multicenter clinical trial on over 1,000 patients. Int J Clin Pharmacol Ther Toxicol 31:103–123. Lipsman S, Dewey KG, Lonnerdal B. 1985. Breast-feeding among teenage mothers: Milk composition, infant growth, and maternal dietary intake. J Pediatr Gastroenterol Nutr 4:426–434. Lokken P, Birkeland JM. 1979. Dental discolorations and side effects with iron and placebo tablets. Scand J Dent Res 87:275–278. Lonnerdal B, Keen CL, Hurley LS. 1981. Iron, copper, zinc and maganese in milk. Ann Rev Nutr 1:149–174. Lozoff B, Brittenham G, Viteri FE, Wolf AW, Urrutia JJ. 1982a. Developmental deficits in iron-deficient infants: Effects of age and severity of iron lack. J Pediatr 101:948–952. Lozoff B, Brittenham G, Viteri FE, Wolf AW, Urrutia JJ. 1982b. The effects of short-term oral iron therapy on developmental deficits in iron-deficient anemic infants. J Pediatr 100:351–357. Lozoff B, Wolf AW, Urrutia JJ, Viteri FE. 1985. Abnormal behavior and low developmental test scores in iron-deficient anemic infants. J Dev Behav Pediatr 6:69–75. Lozoff B, Klein NK, Prabucki KM. 1986. Iron-deficient anemic infants at play. J Dev Behav Pediatr 7:152–158.

OCR for page 290
Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc Lozoff B, Brittenham G, Wolf AW, McClish DK, Kuhnert PM, Jimenez E, Jimenez R, Mora LA, Gomez I, Krauskoph D. 1987. Iron deficiency anemia and iron therapy effects on infant developmental test performance. Pediatrics 79:981–995. Lozoff B, Jimenez E, Wolf AW. 1991. Long-term developmental outcome of infants with iron deficiency. N Engl J Med 325:687–694. Lozoff B, Wolf AW, Jimenez E. 1996. Iron-deficiency anemia and infant development: Effects of extended oral iron therapy. J Pediatr 129:382–389. Lozoff B, Jimenez E, Hagen J, Mollen E, Wolf AW. 2000. Poorer behavioral and developmental outcome more than 10 years after treatment for iron deficiency in infancy. Pediatrics 105:E51. Lynch SR, Beard JL, Dassenko SA, Cook JD. 1984. Iron absorption from legumes in humans. Am J Clin Nutr 40:42–47. Lynch SR, Dassenko SA, Cook JD, Juillerat MA, Hurrell RF. 1994. Inhibitory effect of a soybean-protein—Related moiety on iron absorption in humans. Am J Clin Nutr 60:567–572. MacLennan AH, MacLennan A, Wenzel S, Chambers HM, Eckert K. 1993. Continuous low-dose oestrogen and progestogen hormone replacement therapy: A randomised trial. Med J Aust 159:102–106. Magnusson B, Hallberg L, Rossander L, Swolin B. 1984. Iron metabolism and “sports anemia”. II. A hematological comparison of elite runners and control subjects. Acta Med Scand 216:157–164. Magnusson MK, Sigfusson N, Sigvaldason H, Johannesson GM, Magnusson S, Thorgeirsson G. 1994. Low iron-binding capacity as a risk factor for myocardial infarction. Circulation 89:102–108. Mahalko JR, Sandstead HH, Johnson L, Milne DB. 1983. Effect of moderate increase in dietary protein on the retention and excretion of Ca, Cu, Fe, Mg, P, and Zn by adult males. Am J Clin Nutr 37:8–14. Manttari M, Manninen V, Huttunen JK, Palosuo T, Ehnholm C, Heinonen OP, Frick MH. 1994. Serum ferritin and ceruloplasmin as coronary risk factors. Eur Heart J 15:1599–1603. McCord JM. 1996. Effects of positive iron status at a cellular level. Nutr Rev 54:85–88. McGuigan MA. 1996. Acute iron poisoning. Pediatr Ann 25:33–38. Meadows NJ, Grainger SL, Ruse W, Keeling PW, Thompson RP. 1983. Oral iron and the bioavailability of zinc. Br Med J 287:1013–1014. Mendelson RA, Anderson GH, Bryan MH. 1982. Zinc, copper and iron content of milk from mothers of preterm and full-term infants. Early Hum Dev 6:145–151. Mendoza C, Viteri FE, Lonnderdal B, Young KA, Raboy V, Brown KH. 1998. Effect of genetically modified, low-phytic acid maize on absorption of iron from tortillas. Am J Clin Nutr 68:1123–1127. Milman N, Kirchhoff M. 1991a. Iron stores in 1433, 30- to 60-year-old Danish males. Evaluation by serum ferritin and haemoglobin. Scand J Clin Lab Invest 51:635–641. Milman N, Kirchhoff M. 1991b. The influence of blood donation on iron stores assessed by serum ferritin and hemoglobin in a population survey of 1,359 Danish women. Ann Hematol 63:27–32. Minihane AM, Fairweather-Tait SJ. 1998. Effect of calcium supplementation on daily nonheme-iron absorption and long-term iron status. Am J Clin Nutr 68:96–102.

OCR for page 290
Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc Monsen ER, Hallberg L, Layrisse M, Hegsted DM, Cook JD, Mertz W, Finch CA. 1978. Estimation of available dietary iron. Am J Clin Nutr 31:134–141. Morrison HI, Semenciw RM, Mao Y, Wigle DT. 1994. Serum iron and risk of fatal acute myocardial infarction. Epidemiology 5:243–246. Moss AJ, Levy AS, Kim I, Park YK. 1989. Use of Vitamin and Mineral Supplements in the United States: Current Users, Types of Products, and Nutrients. Advance Data, Vital and Health Statistics of the National Center for Health Statistics, Number 174. Hyattsville, MD: National Center for Health Statistics. Muir A, Hopfer U. 1985. Regional specificity of iron uptake by small intestinal brush-border membranes from normal and iron-deficient mice. Am J Physiol 248:G376–G379. Murphy JF, O’Riordan J, Newcombe RG, Coles EC, Pearson JF. 1986. Relation of haemoglobin levels in first and second trimesters to outcome of pregnancy. Lancet 1:992–995. Nassar BA, Zayed EM, Title LM, O’Neill BJ, Bata IR, Kirkland SA, Dunn J, Dempsey GI, Tan MH, Johnstone DE. 1998. Relation of HFE gene mutations, high iron stores and early onset coronary artery disease. Can J Cardiol 14:215–220. Nelson RL, Davis FG, Sutter E, Sobin LH, Kikendall JW, Bowen P. 1994. Body iron stores and risk of colonic neoplasia. J Natl Cancer Inst 86:455–460. Nelson RL, Davis FG, Persky V, Becker E. 1995. Risk of neoplastic and other diseases among people with heterozygosity for hereditary hemochromatosis. Cancer 76:875–879. Newhouse IJ, Clement DB. 1995. The efficacy of iron supplementation in iron depleted women. In: Kies CV, Driskell JA, eds. Sports Nutrition: Minerals and Electrolytes. Boca Raton: CRC Press. Pp. 47–57. Niederau C, Fischer R, Sonnenberg A, Stremmel W, Trampisch HJ, Strohmeyer G. 1985. Survival and causes of death in cirrhotic and in noncirrhotic patients with primary hemochromatosis. N Engl J Med 313:1256–1262. Nilsson L, Solvell L. 1967. Clinical studies on oral contraceptives—A randomized, doubleblind, crossover study of 4 different preparations (Anovlar mite, Lyndiol mite, Ovulen, and Volidan). Acta Obstet Gynecol Scand 46:1–31. Nokes C, van den Bosch C, Bundy DAP. 1998. The Effects of Iron Deficiency and Anemia on Mental and Motor Performance, Educational Acheivement, and Behavior in Children. The International Nutritional Anemia Consultative Group. Washington, DC: ILSI Press. NRC (National Research Council). 1979. Iron. Baltimore: University Park Press. Pp. 248. O’Brien KO, Zavaleta N, Caulfield LE, Wen J, Abrams SA. 2000. Prenatal iron supplements impair zinc absorption in pregnant Peruvian women. J Nutr 130:2251–2255. Olynyk JK, Cullen DJ, Aquilia S, Rossi E, Summerville L, Powell LW. 1999. A population-based study of the clinical expression of the hemochromatosis gene. N Engl J Med 341:718–724. Oosterbaan HP, van Buuren AH, Schram JH, van Kempen PJ, Ubachs JM, van Leusden HA, Beyer GP. 1995. The effects of continuous combined transdermal oestrogen-progestogen treatment on bleeding patterns and the endometrium in postmenopausal women. Maturitas 21:211–219. Osaki S, Johnson DA, Frieden E. 1966. The possible significance of the ferrous oxidase activity of ceruloplasmin in normal human serum. J Biol Chem 241:2746–2751.

OCR for page 290
Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc Oski FA, Honig AS, Helu B, Howanitz P. 1983. Effect of iron therapy on behavior performance in nonanemic, iron-deficient infants. Pediatrics 71:877–880. Osler M, Milman N, Heitmann BL. 1998. Dietary and non-dietary factors associated with iron status in a cohort of Danish adults followed for six years. Eur J Clin Nutr 52:459–463. Picciano MF, Guthrie HA. 1976. Copper, iron, and zinc contents of mature human milk. Am J Clin Nutr 29:242–254. Pollitt E, Gorman KS, Engle PL, Martorell R, Rivera J. 1993. Early supplemental feeding and cognition: Effects over two decades. Monogr Soc Res Child Dev 58:1–99. Powell LW. 1970. Tissue damage in haemochromatosis: An analysis of the roles of iron and alcoholism. Gut 11:980. Preziosi P, Prual A, Galan P, Daouda H, Boureima H, Hercberg S. 1997. Effect of iron supplementation on the iron status of pregnant women: Consequences for newborns. Am J Clin Nutr 66:1178–1182. Raffin SB, Woo CH, Roost KT, Price DC, Schmid R. 1974. Intestinal absorption of hemoglobin iron-heme cleavage by mucosal heme oxygenase. J Clin Invest 54:1344–1352. Raja KB, Simpson RJ, Peters TJ. 1987. Comparison of 59Fe3+ uptake in vitro and in vivo by mouse duodenum. Biochim Biophys Acta 901:52–60. Raja KB, Simpson RJ, Peters TJ. 1993. Investigation of a role for reduction in ferric iron uptake by mouse duodenum. Biochim Biophys Acta 1135:141–146. Raper NR, Rosenthal JC, Woteki CE. 1984. Estimates of available iron in diets of individuals 1 year old and older in the Nationwide Food Consumption Survey. J Am Diet Assoc 84:783–787. Raunikar RA, Sabio H. 1992. Anemia in the adolescent athelete. Am J Dis Child 146:1201–1205. Ravel R. 1989. Clinical Laboratory Medicine: Clinical Application of Laboratory Data. Chicago: Year Book Medical Publishers. Reddy MB, Hurrell RF, Cook JD. 2000. Estimation of nonheme-iron bioavailability from meal composition. Am J Clin Nutr 71:937–943. Reeves JD, Yip R. 1985. Lack of adverse side effects of oral ferrous sulfate therapy in 1-year-old infants. Pediatrics 75:352–355. Reunanen A, Takkunen H, Knekt P, Seppanen R, Aromaa A. 1995. Body iron stores, dietary iron intake and coronary heart disease mortality. J Intern Med 238:223–230. Roest M, van der Schouw YT, de Valk B, Marx JJ, Tempelman MJ, de Groot PG, Sixma JJ, Banga JD. 1999. Heterozygosity for a hereditary hemochromatosis gene is associated with cardiovascular death in women. Circulation 100:1268–1273. Roncagliolo M, Garrido M, Walter T, Peirano P, Lozoff B. 1998. Evidence of altered central nervous system development in infants with iron deficiency anemia at 6 months: Delayed maturation of auditory brainstem responses. Am J Clin Nutr 68:683–690. Rowland TW, Stagg L, Kelleher JF. 1991. Iron deficiency in adolescent girls. Are athletes at risk? J Adolesc Health 12:22–25. Rybo G, Solvell L. 1971. Side-effect studies on a new sustained release iron preparation. Scand J Haematol 8:257–264. Salonen JT, Nyyssonen K, Korpela H, Tuomilehto J, Seppanen R, Salonen R. 1992. High stored iron levels are associated with excess risk of myocardial infarction in eastern Finnish men. Circulation 86:803–811.

OCR for page 290
Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc Salonen JT, Nyyssonen K, Salonen R. 1994. Body iron stores and the risk of coronary heart disease. N Engl J Med 331:1159. Sandberg AS. 1991. The effect of food processing on phytate hydrolysis and availability of iron and zinc. Adv Exp Med Biol 289:499–508. Sandstrom B, Davidsson L, Cederblad A, Lonnerdal B. 1985. Oral iron, dietary ligands and zinc absorption. J Nutr 115:411–414. Scholl TO, Hediger ML, Fischer RL, Shearer JW. 1992. Anemia vs iron deficiency: Increased risk of preterm delivery in a prospective study. Am J Clin Nutr 55:985–988. Selby JV, Friedman GD. 1988. Epidemiologic evidence of an association between body iron stores and risk of cancer. Int J Cancer 41:677–682. Sempos CT, Looker AC, Gillum RF, Makuc DM. 1994. Body iron stores and the risk of coronary heart disease. N Engl J Med 330:1119–1124. Shaw NS, Chin CJ, Pan WH. 1995. A vegetarian diet rich in soybean products compromises iron status in young students. J Nutr 125:212–219. Siegel AJ, Hennekens CH, Solomon HS, Van Boeckel B. 1979. Exercise-related hematuria. Findings in a group of marathon runners. J Am Med Assoc 241:391–392. Siegenberg D, Baynes RD, Bothwell TH, Macfarlane BJ, Lamparelli RD, Car NG, MacPhail P, Schmidt U, Tal A, Mayet F. 1991. Ascorbic acid prevents the dose-dependent inhibitory effects of polyphenols and phytates on nonheme-iron absorption. Am J Clin Nutr 53:537–541. Siimes MA, Refino C, Dallman P. 1980a. Manifestation of iron deficiency at various levels of dietary iron intake. Am J Clin Nutr 33:570–574. Siimes MA, Refino C, Dallman P. 1980b. Physiological anemia of early development in the rat: Characterization of the iron-responsive component. Am J Clin Nutr 33:2601–2608. Simpson RJ, Raja KB, Peters TJ. 1986. Fe2+ uptake by mouse intestinal musosa in vivo and by isolated intestinal brush-border membrane vesicles. Biochim Biophys Acta 860:229–235. Skinner JD, Carruth BR, Houck KS, Coletta F, Cotter R, Ott D, McLeod M. 1997. Longitudinal study of nutrient and food intakes of infants aged 2 to 24 months. J Am Diet Assoc 97:496–504. Smith NJ, Rios E. 1974. Iron metabolism and iron deficiency in infancy and childhood. Adv Pediatr 21:239–280. Snedeker SM, Smith SA, Greger JL. 1982. Effect of dietary calcium and phosphorus levels on the utilization of iron, copper, and zinc by adult males. J Nutr 112:136–143. Sokoll LJ, Dawson-Hughes B. 1992. Calcium supplementation and plasma ferritin concentrations in premenopausal women. Am J Clin Nutr 56:1045–1048. Solomons NW. 1986. Competitive interaction of iron and zinc in the diet: Consequences for human nutrition. J Nutr 116:927–935. Solomons NW, Jacob RA. 1981. Studies on the bioavailability of zinc in humans: Effects of heme and nonheme iron on the absorption of zinc. Am J Clin Nutr 34:475–482. Solomons NW, Pineda O, Viteri F, Sandstead H. 1983. Studies on the bioavailability of zinc in humans: Mechanism of the intestinal interaction of nonheme iron and zinc. J Nutr 113:337–349. Stampfer MJ, Grodstein F, Rosenberg I, Willett W, Hennekens C. 1993. A prospective study of plasma ferritin and risk of myocardial infarction in US physicians. Circulation 87:688.

OCR for page 290
Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc Stevens RG, Jones DY, Micozzi MS, Taylor PR. 1988. Body iron stores and the risk of cancer. N Engl J Med 319:1047–1052. Stevens RG, Graubard BI, Micozzi MS, Neriishi K, Blumberg BS. 1994. Moderate elevation of body iron level and increased risk of cancer occurrence and death. Int J Cancer 56:364–369. Stewart JG, Ahlquist DA, McGill DB, Ilstrup DM, Schwartz S, Owen RA. 1984. Gastrointestinal blood loss and anemia in runners. Ann Intern Med 100:843–845. Stoltzfus R, Dreyfuss M. 1998. Guidelines for the Use of Iron Supplements to Prevent and Treat Iron Deficiency Anemia. Washington, DC: ILSI Press. Strupp BJ, Levitsky DA. 1995. Enduring cognitive effects of early malnutrition: A theoretical reappraisal. J Nutr 125:2221S–2232S. Sullivan JL. 1981. Iron and the sex difference in heart disease risk. Lancet 1:1293–1294. Tanner JM, Whitehouse RH, Takaishi M. 1966. Standards from birth to maturity for height, weight, height velocity and weight velocity: British children, 1965. Part II. Arch Dis Child 41:613–635. Taylor D, Mallen C, McDougall N, Lind T. 1982. Effect of iron supplementation on serum ferritin levels during and after pregnancy. Br J Obstet Gynecol 89:1011–1017. Taylor PG, Martinz-Torres C, Romano EL, Layrisse M. 1986. The effect of cysteine-containing peptides released during meat digestion on iron absorption in humans. Am J Clin Nutr 43:68–71. Thompson CH, Green YS, Ledingham JG, Radda GK, Rajagopalan B. 1993. The effect of iron deficiency on skeletal muscle metabolism of the rat. Acta Physiol Scand 147:85–90. Tuntawiroon M, Sritongkul N, Brune M, Rossander-Hulten L, Pleehachinda R, Suwanik R, Hallberg L. 1991. Dose-dependent inhibitory effect of phenolic compounds in foods on nonheme-iron absorption in men. Am J Clin Nutr 53:554–557. Tuomainen TP, Nyyssonen K, Salonen R, Tervahauta A, Korpela H, Lakka T, Kaplan GA, Salonen JT. 1997. Body iron stores are associated with serum insulin and blood glucose concentrations. Population study in 1,013 eastern Finnish men. Diabetes Care 20:426–428. Tuomainen TP, Kontula K, Nyyssonsen K, Lakka TA, Helio T, Salonen JT. 1999. Increased risk of acute myocardial infarction in carriers of the hemochromatosis gene Cys282Tyr mutation: A prospective cohort study in men in eastern Finland. Circulation 100:1274–1279. Turnlund JR, Keyes WR, Hudson CA, Betschart AA, Kretsch MJ, Sauberlich HE. 1991. A stable-isotope study of zinc, copper, and iron absorption and retention by young women fed vitamin B-6-deficient diets. Am J Clin Nutr 54:1059–1064. Valberg LS. 1980. Plasma ferritin concentration: Their clinical significance and relevance to patient care. Can Med Assoc 122:1240–1248. Valberg LS, Flanagan PR, Chamberlain MJ. 1984. Effects of iron, tin, and copper on zinc absorption in humans. Am J Clin Nutr 40:536–541. Van Asperen IA, Feskens EJ, Bowles CH, Kromhout D. 1995. Body iron stores and mortality due to cancer and ischaemic heart disease: A 17-year follow-up study of elderly men and women. Int J Epidemiol 24:665–670.

OCR for page 290
Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc Van de Vijver LP, Kardinaal AF, Charzewska J, Rotily M, Charles P, Maggiolini M, Ando S, Vaananen K, Wajszczyk B, Heikkinen J, Deloraine A, Schaafsma G. 1999. Calcium intake is weakly but consistently negatively associated with iron status in girls and women in six European countries. J Nutr 129:963–968. Van Dokkum W, Cloughley FA, Hulshof KF, Oosterveen LA. 1983. Effect of variations in fat and linoleic acid intake on the calcium, magnesium and iron balance of young men. Ann Nutr Metab 27:361–369. Vaughan LA, Weber CW, Kemberling SR. 1979. Longitudinal changes in the mineral content of human milk. Am J Clin Nutr 32:2301–2306. Viteri FE, Torun B. 1974. Anaemia and physical work capacity. Clin Haematol 3:609–626. Walker EM, Wolfe MD, Norton ML, Walker SM, Jones MM. 1998. Herditary hemochromatosis. Ann Clin Lab Sci 28:300–312. Walsh CT, Sandstead HH, Prasad AS, Newberne PM, Fraker PJ. 1994. Zinc: Health effects and research priorities for the 1990s. Environ Health Perspect 102:5–46. Walter T, Kovalskys J, Stekel A. 1983. Effect of mild iron deficiency on infant mental developmental scores. J Pediatr 102:519–522. Walter T, de Andraca I, Chadud P, Perales CG. 1989. Iron deficiency anemia: Adverse effects on infant psychomotor development. Pediatrics 84:7–17. Weaver CM, Rajaram S. 1992. Exercise and iron status. J Nutr 122:782–787. Weight LM. 1993. Sports anemia. Does it exist? Sports Med 16:1–4. Weintraub LR, Conrad ME, Crosby WH. 1965. Absorption of hemoglobin iron by the rat. Proc Soc Exp Biol Med 120:840–843. Whiting SJ. 1995. The inhibitory effect of dietary calcium on iron bioavailability: A cause for concern? Nutr Rev 53:77–80. Whittaker P. 1998. Iron and zinc interactions in humans. Am J Clin Nutr 68:442S–446S. WHO (World Health Organization). 1992. The Prevalence of Anaemia in Women. A Tabulation of Available Information. Geneva: WHO. WHO. 1994. An Evaluation of Infant Growth. A Summary of Analyses Performed in Preparation for the WHO Expert Committee on Physical Status: The Use and Interpretation of Anthropometry. WHO Working Group on Infant Growth. WHO/NUT/94.8. Geneva: WHO. WHO/UNICEF/UNU (United Nations Children Fund/United Nations University). 1998. IDA: Prevention, Assessment and Control. Report of a joint WHO/UNICEF/ UNU consultation. Geneva: WHO. Widdowson EM, Spray CM. 1951. Chemical development in utero. Arch Dis Child 26:205–214. Williams MD, Wheby MS. 1992. Anemia in pregnancy. Med Clin North Am 76:631–647 . Willis WT, Dallman PR, Brooks GA. 1988. Physiological and biochemical correlates of increased work in trained iron-deficient rats. J Appl Physiol 65:256–263. Wollenberg P, Rummel W. 1987. Dependence of intestinal iron absorption on the valency state of iron. Naunyn Schmiedebergs Arch Pharmacol 336:578–582. Wollenberg P, Mahlberg R, Rummel W. 1990. The valency state of absorbed iron appearing in the portal blood and ceruloplasmin substitution. Biometals 3:1–7. Worwood M. 1999. Inborn errors of metabolism: Iron. Br Med Bull 55:556–567. Wurzelmann JI, Sliver A, Schreinemachers DM, Sandler RS, Everson RB. 1996. Iron intake and the risk of colorectal cancer. Cancer Epidemiol Biomarkers Prev 5:503–507.

OCR for page 290
Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc Yip R. 2000. Significance of an abnormally low or high hemoglobin concentration during pregnancy: Special consideration of iron nutrition. Am J Clin Nutr 72:272S–279S. Yip R, Reeves JD, Lonnerdal B, Keen CL, Dallman PR. 1985. Does iron supplementation compromise zinc nutrition in healthy infants? Am J Clin Nutr 42:683–687.