National Academies Press: OpenBook

Memorial Tributes: Volume 9 (2001)

Chapter: EIVIND HOGNESTAD

« Previous: ROBERT HERMAN
Suggested Citation:"EIVIND HOGNESTAD." National Academy of Engineering. 2001. Memorial Tributes: Volume 9. Washington, DC: The National Academies Press. doi: 10.17226/10094.
×

Page 119

EIVIND HOGNESTAD

1921–2000

BY IVAN M. VIEST

EIVAND HOGNESTAD, an internationally recognized leader of structural development, died in Evanston, Illinois, on February 16, 2000. Before his retirement in 1989, he devoted his entire professional career to the planning and execution of research and development in the field of reinforced concrete structures. For most of that time he worked for the Portland Cement Association and its latter-day creation, the Construction Technology Laboratories, Inc., where he attained the position of the director of technical and scientific development.

Born at the Hognestad farm in Time parish in Norway on July 17, 1921, Eivind was raised in a country house located on Gandsfjord about five miles from the city of Stavanger. He received his early schooling in a little country grade school and his religious upbringing in a one-room country church. From there he went to the Cathedral School in Stavanger and graduated in 1940. During the “country years” Eivind developed a great love of music and the ocean. The first led to his learning to play the violin and to a life-long interest in concerts and the opera. The second led to craving for a boat. After learning to swim and demonstrating it was to his parents by swimming across the fjord, Eivind was permitted to use a small boat that he built with his own hands. In later life, he became the “Mr. Fix-it” for his family and friends, and an ingenious experimenter in the research laboratories. Sailing taught him how to use a map and a compass. A

Suggested Citation:"EIVIND HOGNESTAD." National Academy of Engineering. 2001. Memorial Tributes: Volume 9. Washington, DC: The National Academies Press. doi: 10.17226/10094.
×

Page 120

few years later when he was fleeing German-occupied Norway for Sweden, this skill saved his life.

From Sweden he was sent to England. Following a thorough British Naval training, he served in the Royal Norwegian Navy as a quartermaster radar mechanic for the remainder of the war. Upon completion of the military service, Hognestad entered the Norwegian Institute of Technology (NIT) at Trondheim, Norway, to continue studies that had been interrupted by the war. He received the civil engineer diploma (Sivilingeniør) in 1947 and departed shortly thereafter for the University of Illinois at Urbana-Champaign. As a research assistant to Professor Frank E. Richart, he was first involved in the nearly completed series of tests of reinforced concrete column footings. He also continued his studies, obtaining an M.S. degree in theoretical and applied mechanics in 1949. He then embarked on an extensive investigation of reinforced concrete columns subjected to combined bending and axial load. Hognestad submitted the results of the investigation to NIT as a doctoral dissertation and later made a trip to Norway to defend it. Upon a successful defense, he was awarded the D.Sc. degree in 1952. When Professor Richart suffered a disabling stroke, Hognestad was assigned most of Richart's research projects and shortly attained the rank of assistant professor. Later, he was promoted to associate professor.

Dr. Hognestad's dissertation made a major contribution to the understanding of the behavior of reinforced concrete. It provided a basic interaction relationship for determining the short-time strength of reinforced concrete columns. As a part of the defense of the dissertation, his attention was directed also to the problem of the strength of long reinforced concrete columns. Even earlier, he had studied the problem of the shear strength of reinforced concrete beams. Furthermore, an extension of Dr. Hognestad's dissertation was concerned with the effect of time on the strength of columns. All these investigations were sponsored by the Reinforced Concrete Research Council (RCRC) with the goal of establishing a scientific base for improvements in the design of reinforced concrete structures.

In 1953, the Portland Cement Association offered Dr. Hognestad the position of the manager of their structural devel-

Suggested Citation:"EIVIND HOGNESTAD." National Academy of Engineering. 2001. Memorial Tributes: Volume 9. Washington, DC: The National Academies Press. doi: 10.17226/10094.
×

Page 121

opment section. His assignment was to design, staff and manage a new state-of-the-art structural laboratory. He first visited leading structural testing laboratories in North America and Europe, then went ahead with the design and construction of the facility near Skokie, Illinois, on the grounds shared with the main office building of the association. Just about that time, there was a national epidemic of failures caused by the lack of knowledge of the shear strength of reinforced concrete. Dr. Hognestad saw to it that several investigations of this problem were carried out. He served as chairman of a national committee that correlated all investigations and developed a solution to the failure problem. The results of these efforts continue to be used today in the design of reinforced concrete structures for shear.

The publication in 1956 of the American Concrete Institute's (ACI) Building Code Requirements for Reinforced Concrete was a major milestone in Dr. Hognestad's work. The code contained an appendix titled, “Abstract of Report of American Concrete Institute-American Society of Civil Engineers Joint Committee on Ultimate Strength Design”. This six-page document was the predecessor of the strength design that is today in universal use for the design of reinforced concrete structures in the United States. The acceptance of the strength method by the profession was in no small measure due to the Dr. Hognestad's steadfast, effective leadership. Other major contributions by Dr. Hognestad were his studies of high strength reinforcement, prestressed concrete and high strength concrete. Although his studies were aimed at implementing even higher levels of the strength of the reinforcing bars, the minimum yield strength of 60,000 psi used universally today represents a 50 percent increase from the levels in general use prior to Dr. Hognestad's investigations. These advancements were among the keys to enormous increases in the maximum height of modern reinforced concrete buildings and in the maximum length of spans of modern concrete bridges.

In addition to directing major research programs in reinforced and prestressed concrete, Dr. Hognestad served as consultant on several pioneering construction projects. In the early stages of the development of the oil fields in the North Sea, the application of reinforced concrete to off-shore structures ap-

Suggested Citation:"EIVIND HOGNESTAD." National Academy of Engineering. 2001. Memorial Tributes: Volume 9. Washington, DC: The National Academies Press. doi: 10.17226/10094.
×

Page 122

peared to offer potential economies. However, no accepted design procedures were available. Dr. Hognestad was retained to work with the designers and regulators from Norway and the European community to develop suitable methods of design. As a result of this effort, reinforced concrete offshore structures are now in common use throughout the world. His other major consultations involved the designs of nuclear power plants and of silo structures for ballistic missiles, and an investigation of reinforcement corrosion in marine structures.

Dr. Hognestad was elected a member of the National Academy of Engineering in 1973. He was also elected a member of the Royal Norwegian Academy of Science and an honorary member of the ACI. He was the recipient of many professional awards. His first and last awards were the 1955 Walter L. Huber Research Prize of the American Society of Civil Engineers (ASCE) and the 1990 University of Illinois Alumni Award for Distinguished Engineering Service. Among those received in-between the two were such coveted honors as the Alfred E. Lindau Award of the ACI and the Arthur J. Boase Award bestowed by the RCRC.

Dr. Hognestad was a leading participant in the work of many technical and administrative committees. He was a member of the ACI Committee 318 during the development of the 1956, 1963 and 1971 Building Code Requirements for Reinforced Concrete and was chairman of the ACI Committee on Offshore Concrete Structures. In the ASCE he chaired the Administrative Committee on Masonry and Reinforced Concrete, and served as a member of the RCRC. He chaired the Technical Activities Committee of the Prestressed Concrete Institute, and participated in the work of the European Concrete Committee and of the International Prestressing Federation.

Dr. Hognestad became active in national society work at a time of major progress in the basic understanding of the behavior of civil engineering structures. His charismatic personality, his facility with the spoken word, and his deep understanding of the appropriate roles of science and experience in practice helped him to inspire the post-war code writers to adopt rapidly the latest scientific advancements in developing the rules for the design of reinforced concrete.

Suggested Citation:"EIVIND HOGNESTAD." National Academy of Engineering. 2001. Memorial Tributes: Volume 9. Washington, DC: The National Academies Press. doi: 10.17226/10094.
×

Page 123

A prolific writer, Dr. Hognestad authored and co-authored well over 100 papers and reports published in technical journals on subjects dealing with structural engineering and construction. Perhaps his most significant publication was the University of Illinois Engineering Experiment Station Bulletin 399, “A Study of Combined Bending and Axial Load in Reinforced Concrete Members”, issued in 1951. This was the subject submitted to NIT as his doctoral dissertation. His other papers of particular note covered such topics as the ultimate strength design; shear strength of beams, slabs and walls; rigid frame failures; and high strength reinforcing bars.

Dr. Hognestad was a talented linguist. He was fluent in five languages and had limited working knowledge of another two. This proved especially useful in his studies of technical literature in his extensive contacts with the engineering community abroad.

Since 1560 the Hognestads have been buried in the same little country churchyard near Dr. Hognestad's home in Norway. In accord with Dr., Hognestad's last wish, his ashes were buried alongside the graves of his ancestors. He is survived by his wife, the former Andreé Stryker; daughter, Kirsten (Mrs. David J. Gordon); son, Hans; six grandchildren; and a sister, Bolette Lea.

Suggested Citation:"EIVIND HOGNESTAD." National Academy of Engineering. 2001. Memorial Tributes: Volume 9. Washington, DC: The National Academies Press. doi: 10.17226/10094.
×

Page 124

Image: jpg
~ enlarge ~

Suggested Citation:"EIVIND HOGNESTAD." National Academy of Engineering. 2001. Memorial Tributes: Volume 9. Washington, DC: The National Academies Press. doi: 10.17226/10094.
×
Page 119
Suggested Citation:"EIVIND HOGNESTAD." National Academy of Engineering. 2001. Memorial Tributes: Volume 9. Washington, DC: The National Academies Press. doi: 10.17226/10094.
×
Page 120
Suggested Citation:"EIVIND HOGNESTAD." National Academy of Engineering. 2001. Memorial Tributes: Volume 9. Washington, DC: The National Academies Press. doi: 10.17226/10094.
×
Page 121
Suggested Citation:"EIVIND HOGNESTAD." National Academy of Engineering. 2001. Memorial Tributes: Volume 9. Washington, DC: The National Academies Press. doi: 10.17226/10094.
×
Page 122
Suggested Citation:"EIVIND HOGNESTAD." National Academy of Engineering. 2001. Memorial Tributes: Volume 9. Washington, DC: The National Academies Press. doi: 10.17226/10094.
×
Page 123
Suggested Citation:"EIVIND HOGNESTAD." National Academy of Engineering. 2001. Memorial Tributes: Volume 9. Washington, DC: The National Academies Press. doi: 10.17226/10094.
×
Page 124
Next: JOE ESTES HOUSE »
Memorial Tributes: Volume 9 Get This Book
×
Buy Hardback | $107.00
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

This is the 9th Volume in the series Memorial Tributes compiled by the National Academy of Engineering as a personal remembrance of the lives and outstanding achievements of its members and foreign associates. These volumes are intended to stand as an enduring record of the many contributions of engineers and engineering to the benefit of humankind. In most cases, the authors of the tributes are contemporaries or colleagues who had personal knowledge of the interests and the engineering accomplishments of the deceased. Through its members and foreign associates, the Academy carries out the responsibilities for which it was established in 1964.

Under the charter of the National Academy of Sciences, the National Academy of Engineering was formed as a parallel organization of outstanding engineers. Members are elected on the basis of significant contributions to engineering theory and practice and to the literature of engineering or on the basis of demonstrated unusual accomplishments in the pioneering of new and developing fields of technology. The National Academies share a responsibility to advise the federal government on matters of science and technology. The expertise and credibility that the National Academy of Engineering brings to that task stem directly from the abilities, interests, and achievements of our members and foreign associates, our colleagues and friends, whose special gifts we remember in this book.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!