Page 19

with little discussion of how well observed trends match with previous scenarios. The period of record is now long enough to make it useful to compare recent trends with the scenarios, and such studies will become all the more fruitful as years pass. The increase of global fossil fuel CO2 emissions in the past decade, averaging 0.6% per year, has fallen below the IPCC scenarios. The growth of atmospheric CH4 has fallen well below the IPCC scenarios. These slowdowns in growth rates could be short-term fluctuations that may be reversed. However, they emphasize the need to understand better the factors that influence current and future growth rates.

Global warming will not be spatially uniform, and it is expected to be accompanied by other climate changes. In areas and seasons in which there are large temperature changes, feedbacks may be much larger than their global values. An example of such regionally large effects is the ice-albedo feedback. Reduced snow cover and sea and lake ice will be important at high latitudes and higher elevations, especially during winter and spring. In the presence of the higher temperatures, atmospheric water vapor concentration and precipitation will also be higher. Determining the net ice-albedo feedback effect is complicated by its connections to other aspects of the hydrologic and energy cycles. Clouds may change to amplify or reduce its effect. Increased precipitation with warming at the margin of ice and snow may act to either reduce or amplify this effect, e.g., reducing the effect by increasing snow levels where it is below freezing. Changing vegetation cover likewise can introduce major modification.

An increase in the recycling rate of water in the hydrologic cycle is anticipated in response to higher global average temperatures. Higher evaporation rates will accelerate the drying of soils following rain events, thereby resulting in drier average conditions in some regions, especially during periods of dry weather during the warm season. The drier soils, with less water available for evapotranspiration, will warm more strongly during sunlight hours resulting in higher afternoon temperatures, faster evaporation, and an increase in the diurnal temperature range. The effect is likely to be greatest in semi-arid regions, such as the U.S. Great Plains. The faster recycling of water will lead to higher rainfall rates and an increase in the frequency of heavy precipitation events.

There is a possibility that global warming could change the behavior of one or more of the atmosphere's natural modes of variability such as ENSO or the so-called North Atlantic or Arctic Oscillation. Such changes could lead to complex changes in the present-day patterns of temperature and precipitation, including changes in the frequency of winter or tropical storms. Higher precipitation rates would favor increased intensity of tropical cyclones, which derive their energy from the heat that is released when water vapor condenses.

Temperatures are expected to increase more rapidly over land compared to oceans because of the ocean's higher heat capacity and because it can transfer more of the trapped heat to the atmosphere by evaporation. Over land, the warming has been—and is expected to continue to be—larger during nighttime than during daytime.

Consequences of Increased Climate Change of Various Magnitudes

The U.S. National Assessment of Climate Change Impacts, augmented by a recent NRC report on climate and health, provides a basis for summarizing the potential consequences of climate change. 2 The National Assessment directly addresses the importance of climate change of various magnitudes by considering climate scenarios from two well-regarded models (the Hadley model of the United Kingdom and the Canadian Climate Model). These two models have very different globally-averaged temperature increases (2.7 and 4.4°C (4.9 and 7.9°F), respectively) by the year 2100. A key conclusion from the National Assessment is that U.S. society is likely to be able to adapt to most of the climate change impacts on human systems, but these adaptations may come with substantial cost. The primary conclusions from these reports are summarized for agriculture and forestry, water, human health, and coastal regions.

In the near term, agriculture and forestry are likely to benefit from CO2 fertilization effects and the increased water efficiency of many plants at higher atmospheric CO2 concentrations. Many crop distributions will change, thus requiring significant regional adaptations. Given their resource base, the Assessment concludes that such changes will be costlier for small farmers than for large corporate farms. However, the combination of the geographic and climatic breadth of the United States, possibly augmented by advances in genetics, increases the nation's robustness to climate change. These conclusions depend on the climate scenario, with hotter and drier conditions increasing the potential for declines in both agriculture and forestry. In addition, the response of insects and plant diseases to warming is poorly understood. On the regional scale and in the longer term, there is much more uncertainty.

Increased tendency toward drought, as projected by some models, is an important concern in every region of the United States even though it is unlikely to be realized everywhere in the nation. Decreased snow pack and/or earlier season melting are expected in response to warming because the freeze line will be moving to higher elevations. The western part of

2Except where noted, this section is based on information provided in the U.S. National Assessment. U.S. Global Change Research Program, “Climate Change Impacts on the United States: The Potential Consequences of Climate Variability and Change”, 2001, Cambridge University Press, 612 pp.

The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement