It’s the World, Stupid!

NORMAN P. NEUREITER

I was a chemistry major in college, and I must admit that we looked down on engineers. They were a slightly strange lot of guys (no women in those days) with pocket protectors and dangling slide rules. Their building was way across campus, and they had no room in their schedules for English, history, foreign languages, or philosophy. And engineers always seemed to have a kind of academic grease under their fingernails. Admittedly, we chemists had acid holes in our clothes, but we wore them as a badge of honor—because we were doing “pure science” and were pursuing “fundamental knowledge.”

My change of heart began when I joined an oil company and found out that chemists were the outsiders whose ideas were usually dismissed by managers who had grown up in the oil patch. Engineers ran the place, turning sulfurous black crude into gasoline and petrochemical feedstocks that propelled the national economy. Later I joined Texas Instruments (TI), where the entire culture was one of engineers. Even the chief financial officer had been a double-E in college. And two weeks ago when Jack St. Clair Kilby, a modest former TI engineer without a Ph.D. and a revered friend, was honored with the Nobel Prize for his 1958 invention of the integrated circuit, my false chemist’s pride was dashed forever. So I stand here today humble and respectful in this hall of engineering accomplishment.

Let me start by apologizing for using a rather crude title for my remarks, “It’s the World, Stupid!” Actually, I stole this line from a recent op-ed piece in the New York Times by William Safire. I did so out of frustration and disappointment that, even as the election campaign reached a crescendo, the vital issues of U.S. foreign policy hardly came up for discussion. One could conclude that the



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement



Below are the first 10 and last 10 pages of uncorrected machine-read text (when available) of this chapter, followed by the top 30 algorithmically extracted key phrases from the chapter as a whole.
Intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text on the opening pages of each chapter. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

Do not use for reproduction, copying, pasting, or reading; exclusively for search engines.

OCR for page 1
Engineering and Environmental Challenges: Technical Symposium on Earth Systems Engineering It’s the World, Stupid! NORMAN P. NEUREITER I was a chemistry major in college, and I must admit that we looked down on engineers. They were a slightly strange lot of guys (no women in those days) with pocket protectors and dangling slide rules. Their building was way across campus, and they had no room in their schedules for English, history, foreign languages, or philosophy. And engineers always seemed to have a kind of academic grease under their fingernails. Admittedly, we chemists had acid holes in our clothes, but we wore them as a badge of honor—because we were doing “pure science” and were pursuing “fundamental knowledge.” My change of heart began when I joined an oil company and found out that chemists were the outsiders whose ideas were usually dismissed by managers who had grown up in the oil patch. Engineers ran the place, turning sulfurous black crude into gasoline and petrochemical feedstocks that propelled the national economy. Later I joined Texas Instruments (TI), where the entire culture was one of engineers. Even the chief financial officer had been a double-E in college. And two weeks ago when Jack St. Clair Kilby, a modest former TI engineer without a Ph.D. and a revered friend, was honored with the Nobel Prize for his 1958 invention of the integrated circuit, my false chemist’s pride was dashed forever. So I stand here today humble and respectful in this hall of engineering accomplishment. Let me start by apologizing for using a rather crude title for my remarks, “It’s the World, Stupid!” Actually, I stole this line from a recent op-ed piece in the New York Times by William Safire. I did so out of frustration and disappointment that, even as the election campaign reached a crescendo, the vital issues of U.S. foreign policy hardly came up for discussion. One could conclude that the

OCR for page 1
Engineering and Environmental Challenges: Technical Symposium on Earth Systems Engineering American people are not interested in what goes on in the rest of the world. Nevertheless, America today is the only superpower and the world’s richest nation. The mantle of world leadership is on our shoulders—if only by default. How we exercise our world leadership—and what we do with our wealth and military strength—and how we conduct our foreign policy will be prime determinants of whether this shrinking globe will become a sustainable society, a goal often talked about but completely elusive. A U.S. presidential election is not just about America; it is about the world. The problems we face—climate change, disaster mitigation, the spread of infectious diseases, safe drinking water, food security, the dramatic loss of species, protection of critical infrastructure, terrorism, proliferation of weapons of mass destruction—do not stop at anybody’s border. When dioxin from an incinerator in the lower 48 finds its way through seal meat into the bodies of Inuit people in the Arctic, one sees how small this complex world really is. A Russian cosmonaut said he realized that “we are all sailing in the same boat” when he saw an orange cloud that had formed from a dust storm over the Sahara reach the Philippines and settle there with the rain. The Ebola virus has an incubation period of four days—long enough for a 747 to take an infected person a very long way and to many different countries. I commend the National Academy of Engineering for its concern about these issues. I strongly believe that our scientific and engineering resources can provide bases for addressing the world’s major problems. But I was also pleased to see in the summary notes of the NAE summer workshop a recognition that science and engineering cannot provide solutions to all of the equations that bear on the huge, nonlinear systems underlying our global problems. Cultural, social, political, even religious factors—all of these with coefficients that vary radically from nation to nation—must also be included in the calculations. They could even turn out to be more important than technology. With the end of the bipolar Soviet-U.S. standoff, we not only have no New World Order. We have a new world of inordinate disorder. Just how disorderly? There are 6 billion people, and the population is increasing by 80 million a year. At that rate, we will have about 9 billion people by 2050. People live in 191 countries, including Taiwan. They speak 3,000 to 4,000 different languages. We can’t print world maps fast enough to keep up with the changes. In the business world, megamergers are announced almost weekly as even the biggest companies combine with each other to serve global markets. But in the political world, centrifugal forces prevail. Ethnic tensions and nationalist ambitions continue to divide people, and official sources count some 34 wars in progress at the present time. More than 14 million refugees subsist without permanent homes. Infectious diseases kill 40,000 to 50,000 people every day. The world consumes 78 million barrels of oil every day, and every year we release 6 billion tons of carbon into the atmosphere. Many people are convinced the world climate is already showing the effects.

OCR for page 1
Engineering and Environmental Challenges: Technical Symposium on Earth Systems Engineering This is my thirty-fifth day on the job as the first-ever science and technology advisor to the secretary of state. I was happily retired and doing my own thing when this full-time job at the State Department was offered to me, and I just couldn’t resist. But working in government seems more difficult today than it was 30 years ago; today there are many more rules, and they are much more complicated. The bureaucracy is more complex, and although we face many of the same issues we faced in years past, they often seem more acute. My job was created in response to a recommendation in a National Research Council (NRC) study on science and technology in the State Department. The study noted that of the 16 stated strategic goals of U.S. foreign policy, 13 “encompass science, technology, or health considerations” (NRC, 1999). The report also cited specific instances when an understanding of underlying science and technology issues has or is expected to achieve the nation’s foreign policy goals. The primary mission of my new office is to ensure that science and technology considerations are fully integrated into the foreign policy process. I am gratified that this conference deals with the policy dimensions of global challenges—not just the technical alternatives—because we are looking for ways for engineers to participate effectively in formulating policy, not just in presenting technical options. I do not overestimate how much I, an individual has-been chemist can do to influence U.S. foreign policy. However, the number one priority for my office is to establish the closest possible links between the foreign policy community and the men and women of science and engineering. I want to build a “superconducting bus-bar” between the National Academies and the State Department. I want to establish a seamless mechanism that ensures that the Department of State can readily draw on the best science and engineering talent and data in creating U.S. policy. We have begun this process and it is working, but we have a long way to go. Even though there are excellent transmitters in the science and technology community, we will have to work hard to ensure that there are good receivers at the State Department. That will not be as easy as it seems. We face some serious challenges. First, we would like to be ahead of the curve, not limping along behind trying to catch up. In other words, we would like an early warning system that alerts policy makers to scientific and technological issues on the horizon that will become future policy problems. However, if the warnings arrive too early, they won’t be heeded. The timing has to be right. A second problem is that we rarely have all of the scientific data before a political decision has to be made. In addition, scientists and engineers often have different analyses and interpretations of the data that are available. That presents a huge dilemma for policy makers. Whom does one believe? For engineers to play a role in policy making, they must tell us where facts stop and opinions begin, and they must educate us about the reasoning behind the opinions. Engineers must also help us understand the risk-reward ratios for a given set of actions.

OCR for page 1
Engineering and Environmental Challenges: Technical Symposium on Earth Systems Engineering Finally, we must consider how the public views a given policy. Policies that do not have the support of the people will ultimately fail. Educating the public is an area in which the science and engineering community can do much more. On complex issues, it is not enough to tell the policy wonks at the State Department what they should do. For instance, today in Europe political pressures have escalated the concept of “precaution” to such a high point that policy makers are demanding zero risk from genetically modified foods, environmental pollutants, and new energy sources. We all know nothing has zero risk—not even going out the door and crossing the street. And I assure you that trying to influence the elusive, often chaotic process of formulating our nation’s foreign policy is not a zero-risk proposition. That is why we want you to help us. You must pay more attention to explaining your views and the technical bases for them in the popular media so the public can make rational, informed choices. There is perhaps one more useful thought about risk. Scientific American Presents included some comments on extreme engineering in the winter 1999 issue that you might remember when you consider complex global systems. The article includes a sobering aerial photograph of Pripyat, an abandoned town near Chernobyl, a ghostly, ghastly gray under a layer of snow and lowering winter clouds. The caption reads: “Colossal accidents happen when overconfidence and complacency prevail.” That’s a useful reminder in any discipline—even foreign policy. The article also says that “engineers and managers of technology, being human, can come to believe in themselves and their creations beyond reasonable limits” (Petroski, 1999). Although this always leads to failure initially, once the failure is understood and the sting of tragedy is sufficiently remote, engineers usually pick up where they left off in pursuit of greater goals—which they then often attain. Just one final point: in this new disorderly world, I believe we must change our definition of national security. There is more to ensuring our nation’s security than the intelligence community and the military can provide. The front line of national security is still diplomacy, and our embassies and consulates abroad who are seeking solutions for political unrest, negotiating global treaties to protect or reclaim the environment, stimulating economic growth and development, helping ease the burdens of disease that can inhibit economic progress and lead to regional instability, and working in countless other ways to build and sustain peaceful, constructive relationships among nations. But diplomats are not always successful. Diplomacy is a lot more than sipping tea and attending cocktail parties. It is the last line of defense before war. At this point in human history, war—despite its popularity among the despots and the desperate—on a global scale is no longer a viable option. Therefore, the Department of State is a vital instrument of national security. Unfortunately, the department has not fared well in the annual budget wars up and down Pennsylvania Avenue. Since 1985, the total budget for international

OCR for page 1
Engineering and Environmental Challenges: Technical Symposium on Earth Systems Engineering affairs has fallen some 34 percent in real terms. In the last five years the budget for State Department operations has dropped 17 percent. During the same period we have had to establish new embassies abroad as countries have emerged from ethnic conflicts or the collapse of authoritarian regimes. We have had to strengthen our buildings against expanding terrorist threats—and the State Department has had its casualties. The lack of resources has delayed the deployment of cutting-edge communications and computer technology for handling the flow of information vital to effective diplomacy. And, as the NRC report pointed out, the limited resources have constrained our ability to coordinate the international science and technology initiatives that are often a significant component of our diplomatic gestures toward other countries. Budgetary constraints have also limited the number of technically qualified people in the State Department who can be effective receivers of the advice and counsel of engineers in the policy-making process. These are real issues, and they need real attention. This time, at least, William Safire was right—“it’s the world, stupid.” REFERENCES National Research Council. 1999. The Pervasive Role of Science, Technology, and Health in Foreign Policy. Washington, D.C.: National Academy Press. Petroski, H. 1999. The hubris of extreme engineering. Scientific American Presents 10(4): 94–104.

OCR for page 1
Engineering and Environmental Challenges: Technical Symposium on Earth Systems Engineering This page intentionally left blank.