National Academies Press: OpenBook
« Previous: K Data Comparing Carbohydrate Intake to Intake of Other Nutrients from the Continuing Survey of Food Intakes by Individuals (CSFII), 1994–1996, 1998
Page 1244 Cite
Suggested Citation:"L Options for Dealing with Uncertainties." Institute of Medicine. 2005. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids. Washington, DC: The National Academies Press. doi: 10.17226/10490.
×
Page 1244
Page 1245 Cite
Suggested Citation:"L Options for Dealing with Uncertainties." Institute of Medicine. 2005. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids. Washington, DC: The National Academies Press. doi: 10.17226/10490.
×
Page 1245
Page 1246 Cite
Suggested Citation:"L Options for Dealing with Uncertainties." Institute of Medicine. 2005. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids. Washington, DC: The National Academies Press. doi: 10.17226/10490.
×
Page 1246
Page 1247 Cite
Suggested Citation:"L Options for Dealing with Uncertainties." Institute of Medicine. 2005. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids. Washington, DC: The National Academies Press. doi: 10.17226/10490.
×
Page 1247
Page 1248 Cite
Suggested Citation:"L Options for Dealing with Uncertainties." Institute of Medicine. 2005. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids. Washington, DC: The National Academies Press. doi: 10.17226/10490.
×
Page 1248
Page 1249 Cite
Suggested Citation:"L Options for Dealing with Uncertainties." Institute of Medicine. 2005. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids. Washington, DC: The National Academies Press. doi: 10.17226/10490.
×
Page 1249

Below is the uncorrected machine-read text of this chapter, intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text of each book. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

L Options for Dealing with Uncertainties Methods for dealing with uncertainties in scientific data are generally understood by working scientists and require no special discussion here except to point out that such uncertainties should be explicitly acknowl- edged and taken into account whenever a risk assessment is undertaken. More subtle and difficult problems are created by uncertainties associated with some of the inferences that must be made in the absence of directly applicable data; much confusion and inconsistency can result if they are not recognized and dealt with in advance of undertaking a risk assessment. The most significant inference uncertainties arise in risk assessments whenever attempts are made to answer the following questions (NRC, 1994): • What sets of hazard and dose–response data (for a given substance) should be used to characterize risk in the population of interest? • If animal data are to be used for risk characterization, which end- points for adverse effects should be considered? • If animal data are to be used for risk characterization, what measure of dose (e.g., dose per unit body weight, body surface, or dietary intake) should be used for scaling between animals and humans? • What is the expected variability in dose–response between animals and humans? • If human data are to be used for risk characterization, which adverse effects should be used? • What is the expected variability in dose–response among members of the human population? 1244

1245 A PPENDIX L • How should data from subchronic exposure studies be used to esti- mate chronic effects? • How should problems of differences in route of exposure within and between species be dealt with? • How should the threshold dose be estimated for the human population? • If a threshold in the dose–response relationship seems unlikely, how should a low-dose risk be modeled? • What model should be chosen to represent the distribution of exposures in the population of interest when data relating to exposures are limited? • When interspecies extrapolations are required, what should be assumed about relative rates of absorption from the gastrointestinal tract of animals and of humans? • For which percentiles on the distribution of population exposures should risks be characterized? At least partial, empirically based answers to some of these questions may be available for some of the nutrients under review, but in no case is scientific information likely to be sufficient to provide a highly certain answer; in many cases there will be no relevant data for the nutrient in question. It should be recognized that for several of these questions, certain infer- ences have been widespread for long periods of time; thus, it may seem unnecessary to raise these uncertainties anew. When several sets of animal toxicology data are available, for example, and data are not sufficient for identifying the set (i.e., species, strain, and adverse effects endpoint) that best predicts human response, it has become traditional to select that set in which toxic responses occur at the lowest dose (the most sensitive set). In the absence of definitive empirical data applicable to a specific case, it is generally assumed that there will not be more than a tenfold variation in response among members of the human population. In the absence of absorption data, it is generally assumed that humans will absorb the chemi- cal at the same rate as the animal species used to model human risk. In the absence of complete understanding of biological mechanisms, it is gener- ally assumed that, except possibly for certain carcinogens, a threshold dose must be exceeded before toxicity is expressed. These types of long-standing assumptions, which are necessary to complete a risk assessment, are recog- nized by risk assessors as attempts to deal with uncertainties (NRC, 1994). A past National Research Council (NRC) report (1983) recommended adoption of the concepts and definitions that have been discussed in this report. The NRC committee recognized that throughout a risk assessment, data and basic knowledge will be lacking and risk assessors will be faced with several scientifically plausible options (called inference options by the NRC) for dealing with questions such as those presented above. For

1246 DIETARY REFERENCE INTAKES example, several scientifically supportable options for dose scaling across species and for high- to low-dose extrapolation will exist, but there will be no ready means to identify those that are clearly best supported. The NRC committee recommended that regulatory agencies in the United States identify the needed inference options in risk assessment and specify, through written risk assessment guidelines, the specific options that will be used for all assessments. Agencies in the United States have identified the specific models to be used to fill gaps in data and knowledge; these have come to be called default options (EPA, 1986). The use of defaults to fill knowledge and data gaps in risk assessment has the advantage of ensuring consistency in approach (the same defaults are used for each assessment) and minimizing or eliminating case-by-case manipulations of the conduct of risk assessment to meet predetermined risk management objectives. The major disadvantage of the use of defaults is the potential for displacement of scientific judgment by excessively rigid guidelines. A remedy for this disadvantage was also suggested by the NRC committee: risk assessors should be allowed to replace defaults with alter- native factors in specific cases of chemicals for which relevant scientific data are available to support alternatives. The risk assessors’ obligation in such cases is to provide explicit justification for any such departure. Guide- lines for risk assessment issued by the U.S. Environmental Protection Agency (EPA, 1986), for example, specifically allow for such departures. The use of preselected defaults is not the only way to deal with model uncertainties. Another option is to allow risk assessors complete freedom to pursue whatever approaches they judge applicable in specific cases. Because many of the uncertainties cannot be resolved scientifically, case- by-case judgments without some guidance on how to deal with them will lead to difficulties in achieving scientific consensus, and the results of the assessment may not be credible. Another option for dealing with uncertainties is to allow risk assessors to develop a range of estimates based on application of both defaults and alternative inferences that, in specific cases, have some degree of scientific support. Indeed, appropriate analysis of uncertainties seems to require such a presentation of risk results. Although presenting a number of plausible risk estimates has the advantage that it would seem to more faith- fully reflect the true state of scientific understanding, there are no well- established criteria for using such complex results in risk management. The various approaches to dealing with uncertainties inherent in risk assessment are summarized in Table L-1. As can be seen in the nutrient chapters, specific default assumptions for assessing nutrient risks have not been recommended. Rather, the approach calls for case-by-case judgments, with the recommendation that the basis

1247 A PPENDIX L for the choices made be explicitly stated. Some general guidelines for making these choices are, however, offered. REFERENCES EPA (U.S. Environmental Protection Agency). 1986. Proposed guidelines for car- cinogen risk assessment; Notice. Fed Regis 61:17960–18011. NRC (National Research Council). 1983. Risk Assessment in the Federal Government: Managing the Process. Washington, DC: National Academy Press. NRC. 1994. S cience and Judgment in Risk Assessment. W ashington, DC: National Academy Press.

1248 DIETARY REFERENCE INTAKES TABLE L-1 Approaches for Dealing with Uncertainties in a Risk Assessment Program Program Model Advantages Case-by-case judgments by Flexibility; high potential to experts maximize use of most relevant scientific information bearing on specific issues Written guidelines specifying Consistent treatment of different defaults for data and model issues; maximization of uncertainties (with allowance transparency of process; resolution for departures in specific of scientific disagreements possible cases) by resorting to defaults Presentation of full array of Maximization of use of scientific estimates by assessors from all information; reasonably reliable scientifically plausible models portrayal of true state of scientific understanding

1249 A PPENDIX L Disadvantages Potential for inconsistent treatment of different issues; difficulty in achieving consensus; need to agree on defaults Possible difficulty in justifying departure or achieving consensus among scientists that departures are justified in specific cases; danger that uncertainties will be overlooked Highly complex characterization of risk, with no easy way to discriminate among estimates; size of required effort may not be commensurate with utility of the outcome

Next: M Nitrogen Balance Studies Used to Estimate the Protein Requirements in Adults »
Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids Get This Book
×
Buy Paperback | $109.95
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

Responding to the expansion of scientific knowledge about the roles of nutrients in human health, the Institute of Medicine has developed a new approach to establish Recommended Dietary Allowances (RDAs) and other nutrient reference values. The new title for these values Dietary Reference Intakes (DRIs), is the inclusive name being given to this new approach. These are quantitative estimates of nutrient intakes applicable to healthy individuals in the United States and Canada. This new book is part of a series of books presenting dietary reference values for the intakes of nutrients. It establishes recommendations for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids. This book presents new approaches and findings which include the following:

  • The establishment of Estimated Energy Requirements at four levels of energy expenditure
  • Recommendations for levels of physical activity to decrease risk of chronic disease
  • The establishment of RDAs for dietary carbohydrate and protein
  • The development of the definitions of Dietary Fiber, Functional Fiber, and Total Fiber
  • The establishment of Adequate Intakes (AI) for Total Fiber
  • The establishment of AIs for linolenic and a-linolenic acids
  • Acceptable Macronutrient Distribution Ranges as a percent of energy intake for fat, carbohydrate, linolenic and a-linolenic acids, and protein
  • Research recommendations for information needed to advance understanding of macronutrient requirements and the adverse effects associated with intake of higher amounts

Also detailed are recommendations for both physical activity and energy expenditure to maintain health and decrease the risk of disease.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  6. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  7. ×

    View our suggested citation for this chapter.

    « Back Next »
  8. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!