ture. Connections within biology are equally important and the relevance of fields such as population biology, plant biology, and cognitive science to biomedical research should not be ignored. Equally important, teaching and learning must be made more active to engage undergraduates, fully prepare them for graduate study, and give them an enduring sense of the power and beauty of creative inquiry. In light of these realities, this report describes changes in undergraduate education designed to improve the preparation of students in the life sciences, with a particular emphasis on the education that will be needed in the future for careers in biomedical research.

THE REPORT

This study was conducted at the initiative of its sponsors, the National Institutes of Health (NIH) and the Howard Hughes Medical Institute (HHMI). Both sponsors support numerous diverse projects in biomedical research. They view future research as increasingly interdisciplinary and believe that exposing today’s undergraduates to a more interdisciplinary curriculum will help them to better collaborate with their scientific peers in other disciplines as well as to design more interdisciplinary projects on their own. The National Research Council (NRC) convened the Committee on Undergraduate Biology Education to Prepare Research Scientists for the 21st Century to prepare a report addressing issues related to undergraduate education of future biomedical researchers. The committee was charged with examining the formal undergraduate education, training, and experience required to prepare the next generation of life science majors, with a particular emphasis on the preparation of students for careers in biomedical research. One goal of the project was to identify the basic skills and concepts of mathematics, chemistry, physics, computer science, and engineering that can assist students in making novel interdisciplinary connections. The complete formal charge to the committee can be found in Appendix A.

CONCLUSIONS

To successfully undertake careers in research after graduation, students will need scientific knowledge, practice with experimental design, quantitative abilities, and communication skills. While this study was conducted to consider what is appropriate for the education of future biomedical re-



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement