arrays of sensors (sensor swarms) on combinations of fixed and movable platforms. These array systems will exhibit new or emergent properties significantly different from those of individual components and will allow increasingly autonomous operation of Air Force systems (T4). Harnessing the capabilities of microelectromechanical systems (MEMS) to propulsion and aerodynamics will allow miniaturization of air and space platforms (T5). Maximizing the utility of these growing capabilities in information technology, biomimetics, individual sensors and sensor swarms, and MEMS actuators for the Air Force will demand specific attention to system design, architecture, and software for system implementation (T6). Because of the wide range of new capabilities being enabled, the trend to merging heterogeneous materials systems and to expanding the range of materials in micro- and nanoscale devices and systems is inexorable (T7).

Finding T1. Further miniaturization of digital electronics with increased density (~128×) is projected by the integrated circuit industry over the next 15 years based on continued scaling of current technology. The most recent ITRS forecasts the accelerated introduction of smaller dimensions and greater computational power than were forecast by the ITRS 2 years ago.

Recommendation T1. The Air Force should position itself to take advantage of the advances predicted by the Information Technology Roadmap for Semiconductors. Dramatic advances are predicted for device technology. Software, application-specific integrated circuits (ASICs), embedded computers integrating software and hardware for specialized applications, and radiation-hardening and packaging for hostile environments must be designed by, and for, the military, to take advantage of these advances.

Finding T2. In anticipation of an ultimate end to the historical scaling of today’s integrated circuit technology, many new and alternative concepts involving nanometer-dimensioned structures are being examined. As yet, none of these concepts had demonstrated the necessary functionality and integrability to be a clear choice for “beyond silicon.” Many different material and device technologies will need to be explored well into the future. Two facts seem clear. First, it is not possible to make reliable, long-term predictions of breakthrough capabilities emerging from the rich frontier of discovery, fabrication, and material properties at nanometer dimensions. The numerous avenues of research investigation are likely to uncover unexpected processes and/or material properties that will have an impact at the fundamental level of information processing. Second, it seems likely that the initial applications of any of these technologies will build on and enhance the very strong base of existing integrated circuit technology, which will provide the necessary backbone of functionality and integrability until an entirely new computation paradigm emerges.

The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement