As will be seen in the following pages, four overarching themes emerged from the committee’s study of micro- and nanotechnologies:

  • Increased information capabilities,

  • Miniaturization of systems,

  • New materials resulting from new science at these scales, and

  • Increased functionality and autonomy.

These themes emerge as a natural consequence of the advances in micro- and nanotechnologies resulting from scaling to small size. They will have far-reaching consequences for Air Force missions.

Finally, the committee notes that not all things “nano” adhere to the usual nanometer dimensional scale, nanosatellites being a notable example. In this case nanosatellites have overall dimensions of many centimeters—the name evolved as a way to designate systems that are significantly smaller in a revolutionary way from today’s large, expensive satellite technology (see Box 1-2). However, even here the basis for developing nano satellites is provided by advances in micro- and nanotechnologies.


This report documents the committee’s analysis, findings, and recommendations. The Air Force asked the committee to address short-term impacts as well as longer-term impacts, 20 to 50 years out. Both micro- and nanotechnologies were included because in combination they cover the near- and long-term trends in modern technology that will impact Air Force missions. These trends are most apparent in microelectronics and include the miniaturization of components, increased capability (information density), reduced cost per function, and increased reliability and ruggedness. Advances in microtechnology are evolving smoothly into other areas, such as MEMS for micromechanical components, and control at the nanoscale is helping to improve the performance of microscale systems. At the same time new, more revolutionary advances in materials, properties, and, ultimately, systems are emerging at the nanoscale.

In Chapter 2, “Expectations for Future Micro- and Nanotechnologies,” a brief overview of current perspectives in micro- and nanotechnologies is presented. Chapter 3, “Major Areas of Opportunity,” addresses advances in micro-and nanotechnology areas most relevant to the Air Force. The committee included sections on information technology, sensors, biologically inspired materials and systems, structural materials, aerodynamics, and propulsion and power. These are all areas that could be of great interest to the Air Force; however, they do not necessarily merit the same level of emphasis. In Chapter 4, “Enabling Manufacturing Technologies,” the challenges and trends faced by the practical realization of micro- and nanoscale materials, components, and systems are dis-

The National Academies of Sciences, Engineering, and Medicine
500 Fifth St. N.W. | Washington, D.C. 20001

Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement