National Academies Press: OpenBook

Neutrinos and Beyond: New Windows on Nature (2003)

Chapter: 1 Introduction

« Previous: Executive Summary
Suggested Citation:"1 Introduction." National Research Council. 2003. Neutrinos and Beyond: New Windows on Nature. Washington, DC: The National Academies Press. doi: 10.17226/10583.
×

1
Introduction

Recently, several large projects have been proposed related to the fundamental studies of various aspects of neutrino physics and astrophysics. First, a proposal to build IceCube, a cubic-kilometer-scale, high-energy neutrino detector, was submitted to the National Science Foundation (NSF), reviewed by the National Science Board, and recommended for funding. This project would be built at the South Pole, exploiting the large volumes of clear ice to make an extremely large volume detector for observing the secondary charged particle showers caused by high-energy neutrinos interacting with Earth’s mass. Second, three proposals have been recently submitted to develop a deep underground laboratory in the United States that would host a variety of proposed or planned experiments requiring the extremely low background environment provided by the overburden at a deep subterranean location. There has been long-standing interest in the development of such a laboratory in the United States. Recently, various ad hoc committees, long-range planning committees in particle and nuclear physics in the Department of Energy (DOE) and the NSF, and a National Research Council (NRC) panel exploring science opportunities at the interface between physics and astronomy1 have all endorsed the development of such a facility. Proposed sites

1  

Connecting Quarks with the Cosmos: Eleven Science Questions for the New Century, National Academies Press, Washington, D.C., 2003.

Suggested Citation:"1 Introduction." National Research Council. 2003. Neutrinos and Beyond: New Windows on Nature. Washington, DC: The National Academies Press. doi: 10.17226/10583.
×

for a deep underground laboratory have included existing but closed mines, new excavation, and operating mines or repositories. The magnitude and scope of these proposals provide both a significant opportunity and a serious challenge: the breadth of the proposals attests to the substantial excitement for the potential science at these major facilities but demands a careful assessment of this potential in the face of the large long-term costs and responsibilities.

The obvious commonality between the two scientific initiatives included in the charge to the committee, IceCube and a deep underground laboratory, is that both explicitly involve neutrinos and both operate below the surface. A more accurate statement is that both deal with research requiring the detection of extremely rare phenomena. However, although neutrinos (or other rare phenomena) play a prominent role in both initiatives, the origins of the neutrinos, their energy range, and the science IceCube and a deep underground laboratory would address are very different. Furthermore, the two initiatives differ substantially in scope. The IceCube project is a specific, dedicated experiment exploiting the clear ice at the South Pole to construct a cubic-kilometer-scale detector for very high energy neutrinos from space. It addresses a variety of astrophysical problems and potential sources of high-energy neutrinos. In contrast, a deep underground laboratory would provide a general facility with attributes essential for a wide variety of important experiments for detecting neutrinos, rare decays, and extremely weak interactions. At this time, the specific experiments that might be conducted at a particular deep underground laboratory location have not been chosen, but the scientific questions they would address are evident.

Organized largely along the lines suggested by the formal charge to the committee, this report outlines some of the general science common to both initiatives and provides some of the historical and international context for subsequent discussions in this report. Second, it identifies the major science potential of the IceCube project and discusses it in the context of other large-volume neutrino observatories. The report then describes the major science potential of a deep, underground national science laboratory, considering it in the context of ongoing international activities in these research areas. Finally, it presents the committee’s conclusions regarding the scientific merit of this research, the unique opportunities and capabilities of these two facilities, and the issue of possible redundancy between the two types of facility.

Suggested Citation:"1 Introduction." National Research Council. 2003. Neutrinos and Beyond: New Windows on Nature. Washington, DC: The National Academies Press. doi: 10.17226/10583.
×
Page 7
Suggested Citation:"1 Introduction." National Research Council. 2003. Neutrinos and Beyond: New Windows on Nature. Washington, DC: The National Academies Press. doi: 10.17226/10583.
×
Page 8
Next: 2 Science Overview: Neutrinos and Beyond »
Neutrinos and Beyond: New Windows on Nature Get This Book
×
Buy Paperback | $39.00 Buy Ebook | $31.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

The President's FY 2003 Budget Request for the National Science Foundation (NSF) under the Major Research Equipment and Facilities Construction Account called for a National Research Council (NRC) review of the scientific merits of IceCube and other proposed U.S. neutrino projects in the context of current and proposed capabilities throughout the world. The NRC committee-the Neutrino Facilities Assessment Committee (NFAC)-was charged with providing scientific assessments of two possible future science initiatives: (1) IceCube, a very large volume detector of high-energy neutrinos proposed for the South Pole and (2) a possible deep underground science facility to be developed in the United States to pursue a broad range of fundamental questions in physics and astronomy. Fourteen persons were appointed to the committee, and the first meeting was held in June 2002, with delivery of the final report expected within 6 months. The committee's assessment was to be performed in the context of current and planned neutrino capabilities throughout the world. Specifically, the study was to address the unique capabilities of each class of new experiment and any possible redundancy between the two types of facility.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!