extensive case literature documents the ways in which children’s learning is influenced by language, culture, identity, and motivation—issues addressed only peripherally in the NSES, but centrally important for the teaching of many students (e.g., Lee, 2001; Lynch, 2001; Warren, Ballenger, Ogonowski, Rosebery, and Hudicourt-Barnes, 2001; Rodriguez, 1997). This literature also reports on a limited number of design experiments in which teaching that explicitly addressed these issues and built on the cultural and intellectual resources of disadvantaged children produced substantial benefits for their learning (e.g., Rosebery, Warren, Ballenger, and Ogonowski, 2002). There is still a lot we do not know about reducing the achievement gap, but this literature points us in promising directions.


So when all is said and done, what can we conclude about the questions at the beginning of this chapter? Mostly, we can conclude that the evidence is inconclusive. The evidence that is available generally shows that investment in standards-based practices or the presence of teaching practices has a modest positive impact on student learning, but little or no effect on the “achievement gap” between European American and Hispanic or African American students.

It would be nice to have definitive, data-based answers to these questions. Unfortunately, that will never happen. As our inquiry framework (NRC, 2002) attests, the standards lay out an expensive, long-term program for systemic change in our schools. We have just begun the design work in curriculum, professional development, and assessment that will be necessary to enact teaching practices consistent with the standards, so the data reported in this paper are preliminary at best. By the time more definitive data are available, it will be too late to go back. This is true for most complex innovations, significant or trivial. For example, our national decision to invest in interstate highways (as opposed to, say, a system of high-speed rail links) has obviously had enormous consequences for our society, but we will never know what might have happened if we had decided differently. Like the interstate highways, the standards are here to stay. In assessing their impact we will inevitably have to make do with inferences from inconclusive data.

In assessing the impact of the NSES, we must remember that they cannot be enacted without increases in funding for school science programs. It is hard to imagine how teaching consistent with the NSES could take place in schools where most teachers are uncertified, where classes are excessively large, where laboratory facilities or Internet access are not available, or where professional development programs are inadequate, yet those conditions are common in schools today. As Biddle points out, standards can never be a substitute for the material, human, and social resources that all children need to grow and prosper in our society. Our schools and our children need more resources, especially children of poverty and their schools. At best, standards can provide us with guidance about how to use resources wisely.

We must also remember that for all their length and complexity, the NSES provide only rough guidance for the complicated process of school reform. The studies reviewed here address general questions about the large-scale influence of the standards. The standards must exert their influence, though, through millions of individual decisions about curriculum materials, professional development programs, classroom and large-scale assessments, and classroom teaching practices. Those decisions can be guided not only by the standards, but also by the extensive case literature that investigates the effects of particular teaching practices on students and their learning.

Of the studies reviewed in this chapter, those that were conceptually and methodologically most convincing tended to look at relatively close connections in the inquiry framework (NRC, 2002, p. 114). Thus there were convincing studies of relationships between teaching practices and student learning, including both small-scale case studies and larger-scale studies such as those using TIMSS data and the studies by Scantlebury et al. (2001) and Klein et al. (2000). There are also studies that showed interesting relationships between measures of student learning and teachers’ participation in professional development or use of curriculum materials. The longer the chains of inference and causation, though, the less certain the results. My feeling is that we will probably learn more from studies that investigate relationships between proximate variables in the inquiry model (e.g., between teaching practices and student learning or between professional development and teaching practices). We still have a lot to learn, and studies of these relationships will help us become wiser in both policy and practice.

The National Academies of Sciences, Engineering, and Medicine
500 Fifth St. N.W. | Washington, D.C. 20001

Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement