state and local governments. Many jurisdictions also now use digital geospatial data from a number of sources, including multi- or hyperspectral remote sensing data and data from radar, lidar, GIS, and global positioning systems.

The rapid pace of innovation in geospatial data technologies, and the corresponding increase in requirements for data management, in turn increase the technical, budgetary, and management demands made on state and local officials. Data collection, once routinely governed by contracts between a nonfederal public entity and its local airborne remote sensing contractors, is also changing. Some remotely sensed data are available only from global-scale data collection instruments, such as Earth observation satellites. These data are obtained from federal government, commercial, or non-U.S. satellite data providers, and their use is governed by a nonstandardized array of cost, licensing, and access restrictions. State, local, and regional governments may also have to employ technical consultants who can obtain and analyze remotely sensed data, including data from airborne sensors, some of which specialize in collecting bare-earth elevations that provide particularly good data on shorelines and bodies of water.

Critical elements in building the capacity of state and local government to use remote sensing include technical personnel, management and policy personnel, and hardware and software for data management and decision support. In an earlier report, Transforming Remote Sensing Data into Information and Applica tions, the steering committee suggested not only that technical personnel receive training in remote sensing applications, but also that managers and decision makers receive training in the ways the data can be used.1 The steering committee reiterates the importance of this point for state, county, local, and regional governments, recognizing that this training may have to be tailored specifically to managers and decision makers and offered at meetings the managers would be likely to attend.

Although they provide many benefits, these recent technological changes also pose problems for the nonfederal public sector. State and local government responsibilities and expenditures are driven by budgets, laws, regulations, and politics and are often subject to practices and requirements that make it difficult to obtain and manage remote sensing data. For example, many local government officials report that their use of remote sensing data is now or will soon be limited by the capacity of their data storage facilities. Moreover, because state and local governments characteristically have stable staffing with little turnover, they may find it difficult to respond to technological change and related requirements for new expertise for implementing remote sensing applications. Increasingly, state and local governments are facing tight budgets and even shortfalls, which makes


Space Studies Board and Ocean Studies Board, National Research Council, Transforming Remote Sens ing Data into Information and Applications, National Academy Press, Washington, D.C., 2001, p. 43.

The National Academies of Sciences, Engineering, and Medicine
500 Fifth St. N.W. | Washington, D.C. 20001

Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement