1. Designing and implementing air quality monitoring technologies and methods for documenting pollutant exposures to identify risks and set priorities.

  2. Designing, testing, and implementing technologies and systems for efficiently preventing or reducing air pollutant emissions.

  3. Designing and implementing methods and technologies for tracking changes in pollutant emissions, pollutant concentrations, and human health and welfare outcomes to document and ultimately improve the effectiveness of air pollution mitigation activities.

As indicated in Figure 1-3, the aforementioned contributions of science and technology are made through monitoring, analysis, research, and development. Monitoring provides the data necessary to determine trends in emissions, air quality, and various health and ecosystem outcomes. Such observational data are essential for determining the effectiveness of regulations and assuring compliance, providing valuable input to air quality models, and supporting long-term health and ecosystem assessments. In addition, the data are used by the scientific research community. Analysis activities also provide critical information to air quality managers who use model results, risk assessments, and economic and other analyses to better characterize their air quality problems and the impacts of various control strategies. Finally, research and development efforts furnish advances in the fundamental understanding of the science and impacts of air pollution, the instruments needed for monitoring, and the technology available for controlling emissions. Thus, at each stage of CAA implementation, science and technology provide a fundamental basis for sound decisions; at the same time, the requirements of the CAA to continually improve air quality and the understanding of it serves as an important incentive to promote scientific and technological advances.

Although the inputs of science and technology are important, they are not the sole determinants of the success of an AQM system. Effective AQM decisions are made and implemented by elected and appointed leaders in the context of diverse social, economic, and political considerations. Successful AQM requires that the input from the scientific and technological communities is utilized by those leaders to produce adequate and cost-effective pollutant emission reductions for which a variety of societal considerations, including environmental justice, are taken into account. The U.S. AQM system entails the promulgation of rules and regulations on specific types of emissions, the institution of programs that provide incentives for the creative development of new technologies, and the use of emission control technologies and systems that reduce air pollution to a sufficient degree to protect public health. However, the effectiveness of AQM can be undermined by a breakdown in any of these components.

The National Academies of Sciences, Engineering, and Medicine
500 Fifth St. N.W. | Washington, D.C. 20001

Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement