3
The 1996 National Research Council Review of the Mineral Resource Surveys Program and the USGS Response

In 1995 in response to congressional direction, the USGS developed a plan for its mineral resource activities, The National Mineral Resource Surveys Program: A Plan for Mineral-Resource and Mineral-Environmental Research for National Land-Use, Environmental, and Mineral-Supply Decision Making and requested an evaluation of this plan from the NRC. The NRC convened a committee in late 1995 consisting of 12 geoscientists and resource experts from industry, environmental consulting, academia, state agencies, and the Geological Survey of Canada. The panel released its report, Mineral Resources and Society: A Review of the U.S. Geological Survey’s Mineral Resource Surveys Program Plan (NRC, 1996), the following April and provided advice for the USGS’s 1997 planning process.

The 1996 report addressed the following questions:

  1. Evaluate the plan of the Mineral Resource Surveys Program (MRSP) in terms of the nation’s long-term needs for minerals research and information; the completeness and balance of the program; and the scientific significance, credibility, and relevance of the overall program.

  • Does the plan address the nation’s needs in mineral resources, both present-day and long-term?



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement



Below are the first 10 and last 10 pages of uncorrected machine-read text (when available) of this chapter, followed by the top 30 algorithmically extracted key phrases from the chapter as a whole.
Intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text on the opening pages of each chapter. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

Do not use for reproduction, copying, pasting, or reading; exclusively for search engines.

OCR for page 51
Future Challenges for the U.S. Geological Survey’s Mineral Resources Program 3 The 1996 National Research Council Review of the Mineral Resource Surveys Program and the USGS Response In 1995 in response to congressional direction, the USGS developed a plan for its mineral resource activities, The National Mineral Resource Surveys Program: A Plan for Mineral-Resource and Mineral-Environmental Research for National Land-Use, Environmental, and Mineral-Supply Decision Making and requested an evaluation of this plan from the NRC. The NRC convened a committee in late 1995 consisting of 12 geoscientists and resource experts from industry, environmental consulting, academia, state agencies, and the Geological Survey of Canada. The panel released its report, Mineral Resources and Society: A Review of the U.S. Geological Survey’s Mineral Resource Surveys Program Plan (NRC, 1996), the following April and provided advice for the USGS’s 1997 planning process. The 1996 report addressed the following questions: Evaluate the plan of the Mineral Resource Surveys Program (MRSP) in terms of the nation’s long-term needs for minerals research and information; the completeness and balance of the program; and the scientific significance, credibility, and relevance of the overall program. Does the plan address the nation’s needs in mineral resources, both present-day and long-term?

OCR for page 51
Future Challenges for the U.S. Geological Survey’s Mineral Resources Program What are the appropriate roles and responsibilities, and who are the appropriate customers for the USGS’s MRSP? Does the MRSP duplicate the activities of other federal programs with responsibilities related to mineral resources? Are the program’s priorities, products, and audience appropriate to the goals and objectives of the plan? Are the level, scope, and balance of research in the plan sufficient to provide a scientific basis for informed decision making and to build a scientific foundation for the future? Provide recommendations as to how the plan could be modified to improve its effectiveness in meeting the long-term needs of the nation. What are future research needs, activities, and opportunities? What criteria should be established to evaluate the appropriateness and priority of suggested MRSP activities? What areas of scientific expertise will be needed by the MRSP to effectively respond to future issues? The 1996 committee determined that the plan was a logical and necessary continuation of the mineral resources objectives and programs at the USGS and praised the program for moving beyond its traditional role of activities, for advancing the understanding of mineral deposits, for providing the basic geological information for new areas with mineral potential, and for facilitating land-use planning by federal and state agencies, to research on the environmental consequences of minerals development. The 1995 program plan proposed strengthening activities for understanding the environmental consequences of minerals development and including these activities within the broader scope of mineral deposits research. 1996 GENERAL RECOMMENDATIONS Four general recommendations framed the 1996 NRC report. The 1996 committee was aware that, to be useful, specific recommendations on changes to the plan would need to be supplemented with a broader view of the program. For example, the 1996 committee considered the long-term view of mineral resources investigations and their importance

OCR for page 51
Future Challenges for the U.S. Geological Survey’s Mineral Resources Program to the USGS mandate; the organizational and cultural changes that affect geological surveys, the relationships among MRSP subprograms with other USGS programs and disciplines and among customers and partners, and the stated goals and purpose for the program. Consideration of these issues resulted in general recommendations on the following: the program’s vision, mission, and objectives; increased collaboration with users, balanced with independent research; maintaining and increasing core competence; and planning, prioritization, and performance. The current committee examined the 1996 recommendations and the corresponding responses by the MRP prepared by the program coordinator and her staff (Kathleen Johnson, USGS, personal communication, 2002). While overall the program has been guided by the 1996 report, the MRP five-year plan and the goals established by the USGS Geologic Division’s Science Strategy (USGS, 1998a), there are some areas where the current committee believes the MRP would benefit from additional consideration of the 1996 recommendations. Although the context that the program is functioning in today has changed considerably since 1996 (see Chapter 2), the four general recommendations remain directly relevant to the MRP. Vision, Mission, and Objectives The first general recommendation states: “The plan should be modified to include new, clearly articulated statements of vision, mission, and objectives” (NRC, 1996). The 1996 committee believed that formal statement of the program’s vision, mission, and objectives is necessary for the program’s planning, prioritization, and assessment of performance. While these elements were implied in the MRSP plan, the 1996 committee suggested that they should be articulated more clearly. The MRP provided the current committee with its vision and mission statements (Kathleen Johnson, personal communication, USGS, 2002):

OCR for page 51
Future Challenges for the U.S. Geological Survey’s Mineral Resources Program Vision MRP is the sole federal provider of high-quality scientific information, objective resource assessments, and unbiased research results on mineral potential, production, consumption, and environmental behavior. Mission Provide information on regional, national, and global contexts for mineral resources. Develop and enhance understanding of relations between minerals, mineralizing processes, and their contributions to our quality of life. Transfer technologies beyond minerals sciences. Support land management and the nation. To achieve its vision and mission, the MRP has developed a set of scientific goals and operational objectives (see Sidebar 2.1 and Sidebar 3.1). The MRP has developed vision and mission statements. However, the vision statement does not read like a vision statement but rather like a statement of what’s true. The committee believes that a vision statement should be more lofty, something to reach for, even if it has essentially the same phrases. For example, the MRP vision statement might read: The MRP strives to provide the nation and the world with the highest-quality, most trusted scientific information and research on mineral deposits and their lifecycle and environmental behavior and to foster the use of its analyses and data in national and international policy arenas, especially those related to sustainable development. The mission statements are vague and unclear. For example, what does “context” refer to? How do mineralizing processes affect quality of life? What kind of technologies are envisioned and where should they be transferred? How does a general statement about supporting the nation help guide the program? The committee could not find any official public statement of the vision and mission, although the concepts are implied in the MRP planning documents. The committee had to rely on MRP personnel to provide the vision and mission statements. Only the objectives and goals are listed in MRP planning documents and on the program’s Website. The committee notes that the goals and objectives are written as vague, open-ended, deterministic statements rather than definitive goals and objectives

OCR for page 51
Future Challenges for the U.S. Geological Survey’s Mineral Resources Program SIDEBAR 3.1 Mineral Resources Program Operational Objectives Operational Objective A: Improve access to and ease of use of MRP’s products, including both traditional (paper) products and digital data. Operational Objective B: Improve the quality and completeness of MRP digital data through compliance with established standards and through application of consistent data management requirements. Operational Objective C: Foster cooperation and coordination within the USGS and with other federal agencies, states, industry, and academia. Operational Objective D: Prioritize MRP core functions and activities for the purposes of project planning, using internal and external reviews. SOURCE: Kathleen Johnson, USGS, personal communication, 2002. against which progress can be measured. The committee is concerned that there is no mention of research in the operational objectives. It is not clear to the committee what the core functions are or how they are prioritized. This committee reiterates the 1996 committee’s belief that the program’s vision and mission statements are critical in planning, prioritization, and assessment of performance and should be highlighted on the MRP Website and in MRP communications. The committee believes that the lack of clarity in organization and goals adversely affects the MRP’s ability to plan and communicate the value of its work to others. The vision, mission, operational objectives, and goals themselves are confusing and do not provide the guiding light they should for the program. Planning activities for each year should clearly show that topics respond to the vision and mission (and objectives), thereby reinforcing their importance throughout the organization. The committee concludes that the MRP has not adequately responded to the first general recommendation of the 1996 review. The committee recommends that the MRP develop simple, clear mission and vision statements, goals, and objectives that will serve as the guiding principles for the program.

OCR for page 51
Future Challenges for the U.S. Geological Survey’s Mineral Resources Program In addition, the mission and vision are not well communicated in the MRP planning documents, Website, and other materials, nor in statements by leadership, nor in communications with other parties inside and outside the Department of the Interior with whom MRP must work, and they do not address future directions for MRP effort. Incorporating vision and mission into external communications should be complemented by greater internal program cohesion intellectually. Looking to the future, Chapter 5 of this review explores several ways in which the MRP’s vision and mission might evolve over the next decade. Research Balanced with Increased Collaboration with Users The second general recommendation states: “To fulfill its mission, the MRSP and its plan should move away from an organizational culture dominated by self-direction and independent research toward one that also embraces projects developed through collaboration with users” (NRC, 1996). With respect to collaboration with users, the 1996 NRC report expresses the committee’s doubts on whether the MRSP understood the needs of its clients or how its information was being used. On the other hand, the 1996 committee also determined that land management agencies did not understand the true value of resource assessment provided by the program. The 1996 committee made the following suggestions for the program: The MRSP staff should actively involve users in planning projects to help determine the appropriate work products, analytical techniques, map scale, level of detail, and other parameters. The MRSP should seek partnerships with interested parties, in particular state agencies, industry, and academia, in the collection of data and conduct of projects. The MRSP should develop an external grants program to assist its basic research function. The MRSP should be responsive to the needs of users to have reports completed in a timely fashion.

OCR for page 51
Future Challenges for the U.S. Geological Survey’s Mineral Resources Program The 1996 NRC report also reiterates findings from an earlier review of the USGS’s Office of Mineral Resources (NRC, 1987). Presented in Sidebar 3.1 of the 1996 report, these comments highlight a lack of focus and extreme individualism of the staff, a need for improved communication and motivation, and insufficient time devoted to fieldwork, including geological mapping. Currently, MRP projects are developed in collaboration with internal and/or external users (Kathleen Johnson, USGS, personal communication, 2002). Most MRP projects involve interdisciplinary teams of scientists, including scientists within the USGS and from other organizations (e.g., state government, academia). Examples include the following: the recently completed study on industry trends for mid-Atlantic region aggregates companies (Robinson and Brown, 2002); the recently completed integrated study of abandoned mine lands and water quality in the upper Animas drainage in the San Juan Mountains, Colorado (USGS, 1999c, 2002c); and the ongoing geologic and ore-genesis studies of the Red Dog deposit in Alaska, the world’s largest zinc mine (USGS, 2002d). The committee heard presentations from several agencies relating to collaborative efforts with MRP. Interactions with some agencies are quite active and result in extensive collaboration. For example, the MRP assists with mineral assessments for the U.S. Forest Service (Michael Greeley, U.S. Forest Service, personal communication, 2002) when such assessments are required as part of the Forest Service’s Minerals Program Policy. The Abandoned Mine Lands Initiative, whose goal is to develop a watershed-based approach for cost-effective cleanup of legacy mining activities, is another successful collaborative effort with the U.S. Forest Service, Bureau of Land Management, and other land management agencies (USGS, 1999c). Several watershed cleanup efforts, including the Boulder River watershed in southwestern Montana, have benefited from collaboration. However, the committee noted that some opportunities to develop collaborative arrangements might have been missed. One example involved a request by the Bureau of Land Management (BLM) for MRP to conduct a series of assessments (Sie Ling Chiang, BLM, personal communication, 2002). The collaborative effort, which may have involved funding from the BLM, did not go forward due to

OCR for page 51
Future Challenges for the U.S. Geological Survey’s Mineral Resources Program misunderstandings between the BLM and MRP. Prior to 1996, the Bureau of Indian Affairs benefited from MRSP-provided geological information on tribal lands. However, this collaboration ceased in 1996, although the need for scientific and technical guidance by MRP appears to have increased. Tribes increasingly derive income and employment from natural resource development yet have little in-house geological expertise to make important decisions (Steve Manydeeds, Bureau of Indian Affairs, personal communication, 2002). There appears to be a continuing and unmet need for the MRP to reinstitute a productive collaborative effort with the Bureau of Indian Affairs as part of the Department of the Interior’s trust obligations. The committee concludes that there is more collaborative project work being done today by the MRP than in 1996. However, there is still some need for improvement in communication and collaboration with some users. Maintaining and Increasing Core Competence The third general recommendation states: “The MRSP should place more emphasis on maintaining and continuing to develop its core competence in mineral deposits research and minerals-related environmental research in order to anticipate and respond to national needs for mineral resource information” (NRC, 1996). The 1996 committee defined the program’s core competence as (1) excellence in mineral deposits research, (2) scientific integrity, and (3) expert professional staff. The committee recommended that research on geology, geochemistry, and genesis of ore deposits be continued. The committee also noted that this research should include both applied and basic research. Core competence is a popular and much utilized concept for developing a business strategy. It has many definitions, and although the 1996 committee did not specifically define the term, this committee understands it to mean the following: core competency is fundamental knowledge, expertise, or skill in a specific area. The committee notes the term is used in the MRP five-year plan (Kathleen Johnson, USGS, personal communication, 2002). However, it does not appear that the MRP has established the elements that make up its core competence. The committee believes that the MRP management would benefit from a self-assessment to define and identify its core competence (see Chapter 5).

OCR for page 51
Future Challenges for the U.S. Geological Survey’s Mineral Resources Program The USGS has long been recognized for excellence in basic minerals research, and this core competency contributes to the agency’s mission to provide “the Nation with reliable, impartial information to describe and understand the earth” (USGS, 2000). The MRP responded by including most aspects of this recommendation in one or more of the science goals listed in the five-year plan (Kathleen Johnson, USGS, personal communication, 2002) (see Sidebar 2.1). The committee notes that the five-year plan indicates a shift in emphasis toward information and away from minerals related research. The committee recognizes that the MRP has a vital role in providing information (e.g., Minerals Information Team [MIT]), but the committee cautions the MRP against becoming only an information agency. It is important for the MRP to balance these two functions. It is difficult to assess whether the MRP has maintained its core competencies in mineral deposits research and minerals-related environmental research using easily tracked, strictly quantitative criteria. Possible criteria that could be used to determine whether core competency is being maintained include the number of projects per year categorized as mineral deposits research, the number of publications per year in refereed journals and professional papers, and the breakdown of staff per year by technical background (e.g., number of Ph.D.s). However, the committee was not able to obtain from the MRP the appropriate information to make these comparisons. The committee, therefore, attempted to qualitatively evaluate whether the MRP has maintained its core competence. The 1996 NRC review also noted that the USGS has a long-standing and well-deserved reputation for scientific integrity and that the means of continuing that reputation lay in maintaining scientific and data standards. Specific descriptions of sampling and measuring methods should be reported, and analyses performed in outside laboratories should follow specific protocols. At the time of the 1996 NRC report, several changes were taking place in the USGS that had the potential to impact data integrity, such as the move to more centralized labs where research scientists no longer analyze their own samples and therefore have less direct control over data quality and the move toward more data-intensive geochemical baseline studies. Concerned about data integrity, the 1996 committee recommended that the MRP adopt quality assurance and control protocols for data collection, handling, preservation, and analysis. To this end, proto-

OCR for page 51
Future Challenges for the U.S. Geological Survey’s Mineral Resources Program cols have recently been updated to include newer analytical methods involving changes in instrumentation and detailed documentation of the procedures for quality assurance (Taggart, 2002). Finally, the 1996 committee noted that the scientific credibility and respect of the USGS are the result of its high-quality scientific personnel and that this quality should be maintained through recruitment, hiring personnel with expertise in new areas, and utilizing personnel in other programs and disciplines if additional expertise is needed. An essential part of maintaining and developing this professional expertise is attracting and retaining talented scientists with recognized expertise central to the MRP’s research goals. Along with this effort there must be ongoing professional development to meet the changing needs of the organization. The MRP’s five-year plan points to deficiencies in expertise and outlines specific actions to correct them. The MRP has continued research on the geology, geochemistry, and genesis of mineral deposits and has taken steps to ensure data integrity. However, the present committee was unable to determine if the MRP continues to maintain its core competence in mineral deposits research and minerals-related environmental research. The MRP has not done all that is possible to document its continued core competence in these areas. The committee recommends that the MRP perform and publish a self-assessment to identify and define its core competence, to evaluate actions needed to maintain such competence into the future, and to relate those findings to its staffing and staff development plans. As the MRP evolves (see Chapter 5), it must build new core competence in selected new disciplines that address important issues the organization and its stakeholders think should be addressed. Planning, Prioritization, and Performance The fourth and final general recommendation states: “The MRSP and its plan should place greater emphasis on improving mechanisms and procedures for comprehensive planning, setting priorities, and evaluating and enhancing performance, particularly through external reviews or advisory panels. The level of funding for MRSP and the balance of funding among its subprograms deserve thorough review by the MRSP staff, users, and collaborative agencies and organizations” (NRC, 1996). The

OCR for page 51
Future Challenges for the U.S. Geological Survey’s Mineral Resources Program 1996 committee suggested this be implemented through the following activities: External review committees. External review is a common activity for many federal programs and can be implemented through federal advisory committees, NRC committees, or other less formal groups. Improved communication with land management agencies. The 1996 committee believed that employee exchanges would have many benefits, such as helping MRSP staff learn more about users’ needs, providing an opportunity for other agencies to learn more about the uses and limitations of MRSP information, and supplementing MRSP employee expertise. Setting and maintaining program balance, in level, balance, and scope of research. The 1996 committee did not believe it had enough information to assess the program’s appropriate balance. The committee suggested that this determination would require extensive discussions within the MRSP, within the USGS, and with users and could be a potentially important activity for an advisory committee. However, the 1996 committee did urge that project scopes should be national and should not include activities more appropriately handled by state and local agencies. Criteria defining a federal role should include activities that are generic, affect multiple states, or are on federal lands. The USGS has developed a program and project planning process that takes place across organizational structures and disciplines and reflects matrix management, enhanced regional leadership, and an enterprise approach to science (USGS, 2001). The USGS strategic plan (USGS, 2000) and the five-year program plans form the basis for annual project planning (USGS, 2001). Key responsibilities and roles are consistent with the USGS matrix management model. Headquarters personnel are accountable for results relating to longer-term planning—beyond the year of the program and project implementation. They are also responsible for project-level planning and for activities within their offices for the year of implementation. Regional staff is responsible for project-level planning and decision making for the regions for the year of implementation.

OCR for page 51
Future Challenges for the U.S. Geological Survey’s Mineral Resources Program The committee notes that in the Government Performance and Results Act era, anecdotal evidence of a program’s contribution to society is not enough. Government now must demonstrate effective leadership to the nation’s people and their representatives, as well as private and other public sectors, through reporting. This means that all government agencies must now convincingly demonstrate relevant accomplishments, clearly show significant outcomes and the value of all their work, and indicate their effectiveness in doing it. The Government Performance and Results Act goes beyond program and project planning and prioritization. The committee believes that it is more important than ever for the MRP to clearly articulate how performance is measured. 1996 RECOMMENDATIONS FOR THE MRSP SUBPROGRAMS At the time of the 1996 NRC report, the MRSP was divided into four subprograms: assessments, mitigation studies, resource investigations, and information and technology transfer. Each subprogram was broken into components, which were then divided into elements (see Table 3.2). The committee attempted to evaluate the MRP’s response to the specific recommendation of the 1996 NRC review within the context of the current program structure. While the MRP has completed or addressed many of the recommendations, there are several areas that this committee believes have not been adequately addressed. Even though the MRP is no longer organized by subprograms, the committee has retained this organization in the following section to make correlation with the 1996 report straightforward. Assessment Subprogram Estimates of the quantity of undiscovered mineral resources expected to occur within a designated area were developed in the assessment subprogram. The 1996 NRC report notes that assessments are useful for land management decisions, stimulation of the domestic economy, understanding of strategic and critical minerals, providing data for consideration of environmental impacts, and ensuring an adequate domestic supply. Indeed, the 1996 committee received numerous briefings about the need for detailed geological maps, descriptions of known ore deposits, geochemical

OCR for page 51
Future Challenges for the U.S. Geological Survey’s Mineral Resources Program TABLE 3.2 1996 Mineral Resource Surveys Program Organization Subprograms Components Elements Assessments Resource and environmental assessments National and regional assessments, requested and special-purpose assessments   Assessment protocols and methods Assessment protocols, assessment methods Mitigation studies Geochemical backgrounds and baselines Background and baseline mapping, discrimination between natural and mining-related distributions   Studies in support of remediation Processes affecting remediation, field-oriented monitoring techniques   Environmental behavior of mineral deposits Geoenvironmental models of mineral deposits, release, transport, and fixation of metals Resource Investigations Mineral resources frontiers Unconventional deposit types, regional frontier investigations   Mineral deposits studies Ore-forming processes, mineral deposits models   Cooperative industry and international investigations Cooperative industry investigations, cooperative international investigations Information and Technology Transfer Databases and information analysis Database development and management, information analysis, mineral resource specialists   Information and technology transfer Minerals information offices, Center for Environmental Geochemistry and Geophysics, international centers, training   SOURCE: Modified from USGS (1995) and NRC (1996).

OCR for page 51
Future Challenges for the U.S. Geological Survey’s Mineral Resources Program sampling, geophysical surveys, and other basic geoscience data. The 1996 committee recommended the following for this subprogram: Specific Recommendation A “The MRSP should incorporate data and invite expertise from outside the USGS, to the greatest extent practical and constructive, particularly from industry, academia, and state agencies” (NRC, 1996). In designing the global mineral resource assessment (Chapter 2), the MRP is acting on this advice. This project involves both data and expertise from industry, academia, and other geological surveys. The committee learned from discussions with stakeholders and MRP scientists that, although the global resources assessment may be important, the question is whether it is scientifically valid, accurate, and precise. Specific Recommendation B “The MRSP should rigorously document the specific contributions and impacts of past resource assessments related to land-management decisions. The panel strongly recommends that the MRSP publish a single document, written for the lay audience, which documents, explains, and discusses the usefulness of mineral resource assessments and their applications in land management” (NRC, 1996). The MRP responded to this recommendation by stating that efforts to implement it were stymied by difficulty in obtaining information from land management agencies (Kathleen Johnson, USGS, personal communication, 2002). The projects to which this recommendation refers are old enough now that there is no one in the land management agencies who can provide the information. The USGS believes that recent publications on the global minerals assessment are beginning to fill the niche implied by this recommendation. The present committee is concerned that the MRP has not documented the contributions and impacts of past resource assessments. The present committee recommends that the MRP document the contributions and past impacts of resource assessments and other MRP work products. The MRP should seriously consider obtaining feedback from land management agencies and other users upon project completion. Qualitative and quantitative ratings on timeliness, relevance, and understandability of completed projects should be sought. The committee

OCR for page 51
Future Challenges for the U.S. Geological Survey’s Mineral Resources Program believes that such documentation would help communicate the usefulness and current and past value of assessments to a broader audience (e.g., the Office of Management and Budget) and as part of a broader evaluation of the extent to which mineral assessments and other MRP work products are worth the time and effort devoted to them. Specific Recommendation C “Mineral resource assessments should be performed more efficiently, and the cost-savings should be directed to more fundamental investigations in other subprograms of the MRSP” (NRC, 1996). The MRP approach to implementing this recommendation has been to terminate mineral resource assessments for individual national forests or BLM resource areas (Kathleen Johnson, USGS, personal communication, 2002). The MRP now works with the U.S. Forest Service and BLM to aggregate high-priority areas into regional assessments, which allows them to provide information for large areas in the same time once allocated to individual forests or resource areas. The committee notes that it is imperative that the Forest Service and BLM be involved in the project planning process to ensure that their needs for mineral resources information are addressed. It is not clear that there has been any short-term cost savings to the USGS. However, the MRP believes that it can do a better job of meeting the needs of the land mangers through this approach. Mitigation Studies Subprogram The mitigation studies subprogram covered research related to the environmental impacts, both natural and anthropogenic, of mineral deposits. However, the 1996 committee was not convinced that remediation was a proper role for the program and suggested that some of the aspects included should be transferred to other areas (e.g., creating a separate subprogram for geochemical backgrounds and baselines and including environmental investigations under resource investigations) and that some should be terminated. The 1996 committee identified an important need for methods to differentiate natural and anthropogenic geochemical anomalies associated with mineral deposits. In addition, the committee found significance in the

OCR for page 51
Future Challenges for the U.S. Geological Survey’s Mineral Resources Program work to incorporate the processes underlying environmental impact into resource investigations. Finally, the 1996 committee noted that collaboration with users and particularly with the Water Resources Division (now the Water Resources Discipline) staff would be of great benefit to the program. Specifically, the 1996 committee recommended the following for this subprogram. Specific Recommendation D “Merge two components of the Mitigation Studies Subprogram, namely, (1) Studies in Support of Remediation, and (2) Environmental Behavior of Mineral Deposits, into the Resource Investigations Subprogram” (NRC, 1996). This recommendation was primarily organizational. Because the MRP is no longer organized by subprograms, the recommendation was not implemented as written. However, the intent of the recommendation has been implemented. The MRP no longer separates research that is designed to support remediation from research on the processes that occur when mineral deposits encounter surficial processes (Kathleen Johnson, USGS, personal communication, 2002). An example of this type of study is the abandoned mine land project. Specific Recommendation E “Elevate the Geochemical Backgrounds and Baselines component to subprogram status. Emphasize such elements as Discrimination Between Natural and Mining-Related Geochemical Distributions, to reflect the growing national and international importance of this activity” (NRC, 1996). This recommendation was also primarily organizational. Because the MRP is no longer organized by subprograms, the recommendation was not implemented as written. However, the intent of the recommendation was implemented. The MRP has been doing work on geochemical backgrounds and baselines since 1996. Currently, the MRP funds geochemistry baseline work in the following areas: Coeur d’Alene basin, Idaho; Blackfoot River watershed, Montana; the Elizabeth mine, Vermont; at several national parks in Alaska; and in the Fortymile and Goodpaster River watersheds, Alaska. In addition, the MRP is embarking on a soil

OCR for page 51
Future Challenges for the U.S. Geological Survey’s Mineral Resources Program geochemical survey, which will compile old data with new sampling and analysis. Some of these studies have identified the premining background and the distribution of mining-related materials through natural and anthropogenic processes. It is not clear to the committee how much emphasis is placed on understanding the differences between natural and manmade geochemical anomalies. Specific Recommendation F “Increase collaboration with WRD [Water Resources Division] staff to address such issues as chemical releases from mineral deposits, acid drainage prediction, and metal leaching” (NRC, 1996). The MRP works with WRD staff on a variety of projects including abandoned mine lands. In addition, the MRP has recently completed a study of the Coeur d’Alene basin and are continuing a project examining pathways of metal transfer from mineralized sources to plants and animals (including humans). Some MRP projects also involve collaboration with Biological Resources Division scientists. Specific Recommendation G “Discontinue activities directed at the adaptation and improvement of remedial technologies, a part of the Studies in Support of Remediation component” (NRC, 1996). The MRP agrees with the 1996 committee that it does not have the required expertise and is not the appropriate group for this activity. The MRP no longer conducts studies of this sort. In Chapter 5 the committee discusses methods and technology development as a potential new role for the MRP, requiring new partners and professional expertise. Specific Recommendation H “Use a multi-disciplinary approach to determining geochemical backgrounds and baselines by collaborating with other scientists such as microbiologists, soil scientists, aqueous geochemists, sedimentologists, hydrologists, and aquatic biologists” (NRC, 1996). The MRP has made progress toward incorporating a variety of expertise in its projects. The MRP has used new hires, partnering with other programs or organizations, and contractors to obtain the necessary skills.

OCR for page 51
Future Challenges for the U.S. Geological Survey’s Mineral Resources Program The committee encourages the MRP to continue to develop expertise as outlined in the five-year plan and encourages enhancement of the existing mentoring plan to attract outstanding, young scientists to the program. Resource Investigations Subprogram The resource investigations subprogram included research on the characteristics and interpretation of mineral deposits. The 1996 committee noted that the basic and applied research in this subprogram provided the technical background for the other subprograms and should not be diminished. This subprogram included mineral resource frontiers and mineral deposit studies, both of which the 1996 committee urged be maintained. In addition, the subprogram included a cooperative industry and international investigations component for responding to requests from industry and foreign governments; the 1996 committee believed that this area would benefit from leveraging funds through a Cooperative Research and Development Agreement (CRADA) system. Specific recommendations for this subprogram were as follows: Specific recommendation I is the same as specific recommendation D above. Specific recommendation J states: “Revitalize the core competence to conduct basic and applied research on mineral deposits under the Resource Investigations Subprogram, which provides essential information for other MRSP subprograms and numerous users” (NRC, 1996). Issues associated with core competence were discussed under general recommendation 3 above. Specific Recommendation K “Continue basic research conducted under two components in the Resource Investigations Subprogram—Mineral-Resource Frontiers and Mineral-Deposit Studies—such as low-temperature chemistry of water-rock interaction, timing of ore-forming processes, origin of giant ore deposits, and ore deposit evolution as related to continental reconstruction” (NRC, 1996). Basic research continues but is organized as both environmental and resource activities. For example, low-temperature geochemistry is stud-

OCR for page 51
Future Challenges for the U.S. Geological Survey’s Mineral Resources Program ied in support of remediation of abandoned mine lands. In addition, MRP funds a small project devoted exclusively to minerals-related research in aqueous geochemistry, as well as a project aimed at determining rates and mechanisms of sulfide mineral oxidation and toxic element release due to chemical and microbiological processes. On the mineral deposits formation side, the MRP funds work described as “Metals in Basinal Brines and Petroleum” (looking at the transport of metals and nutrients in reduced brines and petroleum), “Early Tertiary Slab Window in Alaska” (assessing the relationship between the formation of orogenic gold deposits and crustal evolution processes), and a newly established project looking at secular variation and ore deposit formation (beginning fiscal year 2003). Specific Recommendation L “Evaluate the feasibility of replacing the Cooperative Industry and International Investigations element with a CRADA system, whereby industrial and foreign government users would provide funding toward needed MRSP research” (NRC, 1996). The MRP continues to partner with the minerals industry and with international geological organizations in order to achieve common goals. The MRP uses a variety of agreements for these partnerships, including memoranda of understanding and CRADAs where appropriate. Specific Recommendation M “The MRSP should be empowered, within budgetary limitations, to conduct selective mineral-deposits research in foreign terrains” (NRC, 1996). The MRP has funded U.S. participation in cooperative work with a number of East Asian countries, including China, Mongolia, Russia, South Korea, and Japan. In addition, the MRP will include overseas deposit studies as part of the global mineral resource assessment (Chapter 2). In addition, the MIT’s country specialists have close relationships with international government and industry organizations. The committee also notes that in the five-year plan reimbursable project development is proposed with foreign entities.

OCR for page 51
Future Challenges for the U.S. Geological Survey’s Mineral Resources Program Information and Technology Transfer Subprogram The information and technology transfer subprogram was designed for developing and maintaining state-of-the-art databases, facilitating the exchange of information with users, providing timely information, and improving understanding by users of the significance and limitations of the information. However, the 1996 committee stated that it was not appropriate for the program to develop spatial data analysis tools but that these tools should be obtained through commercial products or other agency programs. In addition, the 1996 committee noted that transfer of the minerals information activities of the Bureau of Mines (now the MIT, see Chapter 3) should be included in this subprogram. The 1996 recommendations specific to this subprogram were as follows. Specific Recommendation N “The Plan should place greater emphasis on internal consistency and standardization in all aspects of databases and technology transfer” (NRC, 1996). Technology has evolved significantly since 1996. Today most MRP activities are described on the World Wide Web. Technology now enables the MRP to serve spatial data through a single Website. All MRP databases are required to be Federal Geographic Data Committee compliant (Kathleen Johnson, USGS, personal communication, 2002). This means that they must produce and maintain metadata and achieve the standards applicable to their specific data type. Specific Recommendation O “The Plan should be modified to include activities recently transferred from the U.S. Bureau of Mines (USBM) to the USGS” (NRC, 1996). The current MRP five-year plan now includes this function as a separate team, the MIT (see Chapter 4).

OCR for page 51
Future Challenges for the U.S. Geological Survey’s Mineral Resources Program Specific Recommendation P “The Plan should not take on the task of software development for GIS technology but assign that responsibility to other departments in the USGS or obtain products from private vendors” (NRC, 1996). The MRP agrees with the spirit of this recommendation and only develops software when a commercial product is not available (Kathleen Johnson, USGS, personal communication, 2002). For example, most of the software that drives the spatial data Website is off-the-shelf commercial software, but selected parts (e.g., a downloadable print file) were developed in house. SUMMARY Although the context that the program is functioning in today has changed considerably since 1996, the present committee believes that the four general recommendations remain directly relevant to the MRP. In addition, the committee is concerned about the lack of clear channels of responsibility, fragmentation of staff effort, failure to demonstrate satisfactory accomplishments or significance of outcomes of work, lack of established performance goals, lack of evidence that core competencies are in place, and an inability on the part of MRP leadership to answer basic questions on staffing and productivity. The committee concludes that the MRP would benefit significantly by having a highly focused central organization, which is objective driven and possesses clear lines of responsibility for each project. Because of programmatic changes, it was difficult to assess the MRP’s response to the specific recommendations. However, the present committee believes that, when considered within the broader context of current program activities, the MRP has responded to the spirit of many of the specific 1996 recommendations. The committee believes that there are areas where the specific recommendations are still relevant and further improvement is warranted. Examples include (1) external input to and review of resource assessments; (2) increased documentation of the value of MRP work; (3) more research on the differences between natural and man-made geochemical anomalies; (4) increased leveraging of funds from outside sources including foreign sources; and (5) enhancing the mentoring program to encourage the hiring of young scientists with

OCR for page 51
Future Challenges for the U.S. Geological Survey’s Mineral Resources Program interdisciplinary training excellence, such as from National Science Foundation-funded Integrative Graduate Education Research and Traineeship programs.