given in Appendix C in this report, but when discussing the various activities, no dollar amounts are given even for existing projects and programs. The committee found it difficult to judge the plans and priorities for each of the R&D areas. And finally, the plan needs to incorporate to a greater extent a set of “go/no go” decision points in the various development time lines.

Recommendation 9-8. The Department of Energy should continue to develop its hydrogen research, development, and demonstration (RD&D) plan to improve the integration and balance of activities within the Office of Energy Efficiency and Renewable Energy; the Office of Fossil Energy (including programs related to carbon sequestration); the Office of Nuclear Energy Science and Technology; and the Office of Science. The committee believes that, overall, the production, distribution, and dispensing portion of the program is probably underfunded, particularly because a significant fraction of appropriated funds is already earmarked. The committee understands that of the $78 million appropriated for hydrogen technology for FY 2004 in the Energy and Water appropriations bill (Public Law 108-137), $37 million is earmarked for activities that will not particularly advance the hydrogen initiative. The committee also believes that the hydrogen program, in an attempt to meet the extreme challenges set by senior government and DOE leaders, has tried to establish RD&D activities in too many areas, creating a very diverse, somewhat unfocused program. Thus, prioritizing the efforts both within and across program areas, establishing milestones and go/no-go decisions, and adjusting the program on the basis of results are all extremely important in a program with so many challenges. This approach will also help determine when it is appropriate to take a program to the demonstration stage. And finally, the committee believes that the probability of success in bringing the United States to a hydrogen economy will be greatly increased by partnering with a broader range of academic and industrial organizations—possibly including an international focus—and by establishing an independent program review process and board.

Recommendation 9-9. As a framework for recommending and prioritizing the Department of Energy program, the committee considered the following:

  • Technologies that could significantly impact U.S. energy security and carbon dioxide emissions,

  • The timescale for the evolution of the hydrogen economy,

  • Technology developments needed for both the transition period and the steady state,

  • Externalities that would decelerate technology implementation, and

  • The comparative advantage of the DOE in research and development of technologies at the pre-competitive stage.

The committee recommends that the following areas receive increased emphasis:

  • Fuel cell vehicle development. Increase research and development (R&D) to facilitate breakthroughs in fuel cell costs and in durability of fuel cell materials, as well as breakthroughs in on-board hydrogen storage systems;

  • Distributed hydrogen generation. Increase R&D in small-scale natural gas reforming, electrolysis, and new concepts for distributed hydrogen production systems;

  • Infrastructure analysis. Accelerate and increase efforts in systems modeling and analysis for hydrogen delivery, with the objective of developing options and helping guide R&D in large-scale infrastructure development;

  • Carbon sequestration and FutureGen. Accelerate development and early evaluation of the viability of carbon capture and storage (sequestration) on a large scale because of its implications for the long-term use of coal for hydrogen production. Continue the FutureGen Project as a high-priority task; and

  • Carbon dioxide-free energy technologies. Increase emphasis on the development of wind-energy-to-hydrogen as an important technology for the hydrogen transition period and potentially for the longer term. Increase exploratory and fundamental research on hydrogen production by photobiological, photoelectrochemical, thin-film solar, and nuclear heat processes.



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement