that has an energy density approaching that of gasoline systems has not been developed. Thus, the resulting range of vehicles with existing hydrogen storage systems is much too short.

  1. To develop the infrastructure to provide hydrogen for the light-duty-vehicle user. Hydrogen is currently produced in large quantities at reasonable costs for industrial purposes. The committee’s analysis indicates that at a future, mature stage of development, hydrogen (H2) can be produced and used in fuel cell vehicles at reasonable cost. The challenge, with today’s industrial hydrogen as well as tomorrow’s hydrogen, is the high cost of distributing H2 to dispersed locations. This challenge is especially severe during the early years of a transition, when demand is even more dispersed. The costs of a mature hydrogen pipeline system would be spread over many users, as the cost of the natural gas system is today. But the transition is difficult to imagine in detail. It requires many technological innovations related to the development of small-scale production units. Also, nontechnical factors such as financing, siting, security, environmental impact, and the perceived safety of hydrogen pipelines and dispensing systems will play a significant role. All of these hurdles must be overcome before there can be widespread hydrogen use. An initial stage during which hydrogen is produced at small scale near the small user seems likely. In this case, production costs for small production units must be sharply reduced, which may be possible with expanded research.

  2. To reduce sharply the costs of hydrogen production from renewable energy sources, over a time frame of decades. Tremendous progress has been made in reducing the cost of making electricity from renewable energy sources. But making hydrogen from renewable energy through the intermediate step of making electricity, a premium energy source, requires further breakthroughs in order to be competitive. Basically, these technology pathways for hydrogen production make electricity, which is converted to hydrogen, which is later converted by a fuel cell back to electricity. These steps add costs and energy losses that are particularly significant when the hydrogen competes as a commodity transportation fuel—leading the committee to believe that most current approaches—except possibly that of wind energy—need to be redirected. The committee believes that the required cost reductions can be achieved only by targeted fundamental and exploratory research on hydrogen production by photobiological, photochemical, and thin-film solar processes.

  3. To capture and store (“sequester”) the carbon dioxide by-product of hydrogen production from coal. Coal is a massive domestic U.S. energy resource that has the potential for producing cost-competitive hydrogen. However, coal processing generates large amounts of CO2. In order to reduce CO2 emissions from coal processing in a carbon-constrained future, massive amounts of CO2 would have to be captured and safely and reliably sequestered for hundreds of years. Key to the commercialization of a large-scale, coal-based hydrogen production option (and also for natural-gas-based options) is achieving broad public acceptance, along with additional technical development, for CO2 sequestration.

For a viable hydrogen transportation system to emerge, all four of these challenges must be addressed.

The Challenge of Transition

There will likely be a lengthy transition period during which fuel cell vehicles and hydrogen are not competitive with internal combustion engine vehicles, including conventional gasoline and diesel fuel vehicles, and hybrid gasoline electric vehicles. The committee believes that the transition to a hydrogen fuel system will best be accomplished initially through distributed production of hydrogen, because distributed generation avoids many of the substantial infrastructure barriers faced by centralized generation. Small hydrogen-production units located at dispensing stations can produce hydrogen through natural gas reforming or electrolysis. Natural gas pipelines and electricity transmission and distribution systems already exist; for distributed generation of hydrogen, these systems would need to be expanded only moderately in the early years of the transition. During this transition period, distributed renewable energy (e.g., wind or solar energy) might provide electricity to onsite hydrogen production systems, particularly in areas of the country where electricity costs from wind or solar energy are particularly low. A transition emphasizing distributed production allows time for the development of new technologies and concepts capable of potentially overcoming the challenges facing the widespread use of hydrogen. The distributed transition approach allows time for the market to develop before too much fixed investment is set in place. While this approach allows time for the ultimate hydrogen infrastructure to emerge, the committee believes that it cannot yet be fully identified and defined.

Impacts of Hydrogen-Fueled Light-Duty Vehicles

Several findings from the committee’s analysis (see Chapter 6) show the impact on the U.S. energy system if successful market penetration of hydrogen fuel cell vehicles is achieved. In order to analyze these impacts, the committee posited that fuel cell vehicle technology would be developed successfully and that hydrogen would be available to fuel light-duty vehicles (cars and light trucks). These findings are as follows:

  • The committee’s upper-bound market penetration case for fuel cell vehicles, premised on hybrid vehicle experience, assumes that fuel cell vehicles enter the U.S. light-duty vehicle market in 2015 in competition with conventional and hybrid electric vehicles, reaching 25 percent of light-duty

The National Academies of Sciences, Engineering, and Medicine
500 Fifth St. N.W. | Washington, D.C. 20001

Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement