long term storage. Skepticism that such promises could be kept has severely hampered progress.

FINDINGS AND RECOMMENDATIONS

Finding 7-1. It is highly likely that fossil fuels will be the principal sources of hydrogen for several decades. It follows that an expanded role for hydrogen will have a much larger positive impact on the mitigation of climate change if carbon capture and storage technologies are successfully integrated into the fossil fuel production of hydrogen.

The majority of the early carbon capture and storage projects might not involve hydrogen, but could instead involve the capture of the CO2 impurities in natural gas, the capture of CO2 produced at electric plants, or the capture of CO2 at ammonia and synfuels plants. All of these routes to capture, however, share carbon storage as a common element, and it is carbon storage that raises the most difficult institutional issues and issues of public acceptance.

As of 2002, for the first time, the Department of Energy’s programs related to carbon sequestration are listed as an associated program of its hydrogen program.

Recommendation 7-1. The U.S. Department of Energy’s hydrogen program needs to be well integrated with the carbon capture and storage program, to assure that any expanded role for hydrogen produced from fossil fuel has a positive impact on the mitigation of climate change. Such integration will enable the hydrogen program to identify critical technologies and research areas that can enable hydrogen production from fossil fuels with CO2 capture and storage.

Tightening the coupling of the two programs should facilitate setting priorities in those portions of the hydrogen program addressing hydrogen production from fossil fuels and biomass. It should also promote the exploration of overlapping issues—for example, the co-capture and co-storage with carbon dioxide of pollutants such as sulfur during hydrogen production.

Because of the hydrogen program’s large stake in the successful launching of carbon capture and storage activity, the hydrogen program should participate in all of the early carbon capture and storage projects, even those that do not directly involve carbon capture during hydrogen production. These projects will address the most difficult institutional issues and the challenges related to issues of public acceptance, which have the potential of delaying the introduction of hydrogen in the marketplace.

Finding 7-2. The Department of Energy’s recently announced FutureGen Project is intended to demonstrate the production of hydrogen and electricity from coal at a large scale, while capturing CO2. FutureGen may become the world’s earliest carbon capture and storage project integrated with hydrogen production. This project should provide an opportunity to integrate the development of advanced technologies for the production of hydrogen with CO2 capture and storage.

Recommendation 7-2. The FutureGen Project should be managed to encourage the development of technologies that integrate hydrogen production with carbon dioxide capture. FutureGen should have strong research and development components.

Finding 7-3. The successful integration of carbon capture and storage will depend at least as much on institutional factors and public acceptance as on engineering prowess and geological opportunities. Institutional factors include property rights at storage sites, the management of infrastructure, insurance and liability, and the funding of monitoring and verification, including those efforts over the very long term. Public acceptance will depend on achieving and maintaining trust, which will require processes that are regarded as open and fair. The public discussion of local environmental and health risks in this realm has hardly begun, nor has public discussion regarding criteria for long-term storage, such as criteria for durability and verifiability. It may be possible and desirable to achieve broad consensus that early criteria are more permissive and later ones are tougher.

Recommendation 7-3. The Department of Energy should foster public discussion of institutional factors affecting carbon capture and storage, including property rights at storage sites, the management of infrastructure, insurance and liability, and the funding of monitoring and verification, including those efforts over the very long term.

The DOE should foster the identification of the issues likely to have the greatest impact on public acceptance of carbon capture and storage. It should encourage public discussion of local environmental and health risks. It should encourage public discussion of what constitutes “adequate” storage, from the standpoint of durability and verifiability. It should explore the merits of broad agreement that early criteria be more permissive and later ones tougher.



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement