Cover Image


View/Hide Left Panel

take and activities. Complete collections of nutrient losses through urine and feces are possible, as are recurring sampling of biological materials such as blood. Nutrient balance studies measure nutrient status in relation to intake. Depletion-repletion studies, by contrast, measure nutrient status while subjects are maintained on diets containing marginally low or deficient levels of a nutrient; then the deficit is corrected with measured amounts of that nutrient. Unfortunately, these two types of studies have several limitations. Typically they are limited in time to a few days or weeks, and so longer-term outcomes cannot be measured with the same level of accuracy. In addition, subjects may be confined, and findings are therefore not always generalizable to free-living individuals. Finally, the time and expense involved in such studies usually limit the number of subjects and the number of doses or intake levels that can be tested.

In spite of these limitations, feeding studies play an important role in understanding nutrient needs and metabolism. Such data were considered in the DRI process and were given particular attention in the absence of reliable data to directly relate nutrient intake to disease risk.

Observational Studies

In comparison to human feeding studies, observational epidemiological studies are frequently of direct relevance to free-living humans, but they lack the controlled setting. Hence they are useful in establishing evidence of an association between the consumption of a nutrient and disease risk but are limited in their ability to ascribe a causal relationship. A judgment of causality may be supported by a consistency of association among studies in diverse populations, and it may be strengthened by the use of laboratory-based tools to measure exposures and confounding factors, such as personal interviews, rather than other means of data collection. In recent years, rapid advances in laboratory technology have made possible the increased use of biomarkers of exposure, susceptibility, and disease outcome in molecular epidemiological research. For example, one area of great potential in advancing current knowledge of the effects of diet on health is the study of genetic markers of disease susceptibility (especially polymorphisms in genes encoding metabolizing enzymes) in relation to dietary exposures. This development is expected to provide more accurate assessments of the risk associated with different levels of intake of both nutrients and nonnutritive food constituents.

The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement