National Academies Press: OpenBook

A Vision for the International Polar Year 2007-2008 (2004)

Chapter: 7 Actions Needed to Make the International Polar Year Succeed

« Previous: 6 Increasing Public Understanding and Participation in Polar Science Through the International Polar Year
Suggested Citation:"7 Actions Needed to Make the International Polar Year Succeed." National Research Council. 2004. A Vision for the International Polar Year 2007-2008. Washington, DC: The National Academies Press. doi: 10.17226/11013.
×

7
Actions Needed to Make the International Polar Year Succeed

The International Geophysical Year (IGY) brought about fundamental and long-lasting changes in technology, international scientific cooperation, science, and human understanding of nature and the cosmos. The legacy of the IGY is ongoing, informing us about our planet and how it works. Two important international treaties, addressing issues for space and Antarctica, have their origins in the IGY.

Compared to 50 years ago, the most dramatic changes in how science will be conducted in the IPY are the temporal and spatial scales that can be addressed; the advanced sensors, methodologies, and technologies of the computer and information age that can be brought to bear; and the data access, archival, and public involvement that is assured by modern communications and information technologies. Breakthroughs and insights will follow as the new data lead to a deeper and better understanding of the polar regions and their role in the Earth system.

The International Polar Year (IPY) 2007-2008 will build on the legacy of the previous IPYs and the IGY. The IPY aspires to make the following lasting impacts:

  1. Increase international partnerships and cooperation. The scale, scope, and spirit of the IPY demand international coordination and cooperation.

  2. Elevate polar science to a new level. The IPY will be a rallying call to “think outside the box” and use interdisciplinary science to investigate new realms. The IPY will address issues that are most relevant to today’s society that can be best addressed by study in the polar regions. IPY exploration and research will be of the highest quality and challenge the state of the art.

  3. Launch and accelerate initiatives that would otherwise be slow in emerging. The most advanced technologies can be brought to bear in an ensemble approach. A spectrum of temporal and spatial scales will be addressed. Information will be accessible, preserved, and made available to all in the scientific and engineering communities.

Suggested Citation:"7 Actions Needed to Make the International Polar Year Succeed." National Research Council. 2004. A Vision for the International Polar Year 2007-2008. Washington, DC: The National Academies Press. doi: 10.17226/11013.
×
  1. Engage the public in polar discovery. The IPY is an unprecedented opportunity to engage the public in discovery on a real-time basis. Public outreach, education, and public engagement will be hallmarks of the IPY.

  2. Establish human and technological infrastructure that will last far beyond the IPY years. Synergy and focus in science will create unpredictable and unforeseen outcomes greater than the sum of the parts. Long-term contributions will mature and evolve over the years as infrastructure is used, databases grow, samples are analyzed, and knowledge is disseminated or harvested.

RECOMMENDATIONS

Events observed today in the polar regions have captured the attention of the American public. The polar regions play a critical role in controlling linked global-scale atmospheric, oceanic, terrestrial, and biological processes; changes first seen in the polar regions affect weather and life in many areas, including weather patterns here in the midlatitudes. The changes we are now witnessing in the Arctic and Antarctic are unlike any in recorded history, yet we do not understand how or why they are occurring, and we lack the tools and knowledge to understand whether they are part of natural variability or due to anthropogenic effects (IPCC, 2001; NRC, 2002). We do not understand abrupt changes in the past, we cannot forecast the coming years, and we are unprepared to mitigate or adapt to the possible outcome. Life on all levels, from microbial to human, is affected by the environment, yet there are many unknowns in understanding adaptation potential and ecosystem dynamics. Virtually all of the phenomena studied in the polar regions, including biology, geophysics, oceanography, planetary physics, glaciology, economics, and sociology, have close linkages to worldwide processes. Thus, important societal issues, involving countries of all latitudes, are intrinsically linked to processes occurring in the polar regions.

The U.S. National Committee for the International Polar Year recommends that the following opportunities for important new science should receive attention starting in the International Polar Year 2007-2008.

Recommendation 1: The U.S. science community and agencies should use the International Polar Year to initiate a sustained effort aimed at assessing large-scale environmental change and variability in the polar regions.

  • Provide a comprehensive assessment of polar environmental changes through studies of the past environment and the creation of baseline datasets and long-term measurements for future investigations.

    Environmental changes currently observed in the polar regions are unprecedented in times of modern observation. Studies investigating natural environmental variability, human influence on our planet, and global teleconnections will help in understanding mechanisms of rapid climate change and in developing models suitable for forecasting changes that will occur in the twenty-first century. This effort will need to be sustained after IPY 2007-2008.

Suggested Citation:"7 Actions Needed to Make the International Polar Year Succeed." National Research Council. 2004. A Vision for the International Polar Year 2007-2008. Washington, DC: The National Academies Press. doi: 10.17226/11013.
×
  • Encourage interdisciplinary studies and the development of models that integrate geophysical, ecological, social science, and economic data, especially investigations of the prediction and consequences of rapid change.

    Because of its broad interdisciplinary approach, research initiated in IPY 2007-2008 stands to make a significant contribution to our understanding of the causes and consequences of change in the polar regions.

Recommendation 2: The U.S. science community and agencies should pioneer new polar studies of coupled human-natural systems that are critical to U.S. societal, economic, and strategic interests.

  • Encourage research to understand the role of the polar regions in globally linked systems and the impacts of environmental change on society.

    Daily life and economic and strategic activities are constantly affected by changing environmental conditions, including the frequency and degree of severe weather events such as storms or droughts in many regions, including the continental United States. Investigations of impacts of linked environmental-technological-social change and health effects in many communities, including northern communities, are needed.

  • Investigate physical-chemical-biological interactions in natural systems in a global system context.

    Interdisciplinary approaches hold great promise for understanding the dynamics of anthropogenic activities, technologies, and environmental consequences. Investigations of linked atmospheric-oceanic-ice-land processes in the polar regions will enable understanding of global linkages and transformations due to natural and anthropogenic causes.

  • Examine the effects of polar environmental change on the human-built environment.

    Because of the recent large-scale environmental changes, northern communities, infrastructure, and other forms of human-built environment are affected by a variety of factors, such as the thawing of permafrost, higher frequency of severe storms and weather conditions; increased shore- and beach erosion, vegetation die-off, and fire danger. New engineering and policy research should investigate economically feasible and culturally appropriate mitigation techniques for countering the effects of a changing environment on technology, local communities, and their infrastructure, including all-season ground and air transportation, the design of roads, harbors, foundations, and buildings.

Recommendation 3: The U.S. International Polar Year effort should explore new scientific frontiers from the molecular to the planetary scale.

  • Conduct a range of activities such as multidisciplinary studies of terrestrial and aquatic biological communities; oceanographic processes, including seafloor environments; subglacial environments and unexplored subglacial lakes; the Earth’s deep interior; and Sun-Earth connections.

    Opportunities for discoveries exist in many areas, and research could elucidate the structures of poorly understood biological communities, notably the microbial popula-

Suggested Citation:"7 Actions Needed to Make the International Polar Year Succeed." National Research Council. 2004. A Vision for the International Polar Year 2007-2008. Washington, DC: The National Academies Press. doi: 10.17226/11013.
×

tions that contribute to most biogeochemical transformations; reveal oceanic processes that contribute importantly to biological productivity and climate; and discover new physical, chemical, and, potentially, biological characteristics of subglacial lakes long isolated from atmospheric contact. This research also could help understand major geological processes such as seafloor spreading, explore the subglacial topography and bedrock geology of regions important for Earth’s climate history, map the structure of Earth’s interior and explore the links between mantle structure and surface processes, and provide an integrative synthesis of the interactions of our planet with the Sun.

  • Apply new knowledge gained from exploration to questions of societal importance.

    Polar biological studies, notably those that employ modern genomic methodologies, will advance biomedical and biotechnological research. For example, understanding how small mammals withstand temperatures near freezing during hibernation will contribute to improved protocols for cold storage of biological materials and for cryosurgery. Studies of oceanographic phenomena will facilitate more accurate understanding of the mechanisms driving climate change. Understanding how increased flow of fresh water into the polar oceans alters circulation patterns and transfer of heat from the tropics to the poles is one example of contributions from oceanography. Advances in the geosciences (e.g., through study of the extremely slow seafloor spreading rates in the Arctic) may shed light on tectonic processes that contribute to seismic events. Better understanding of solar influences on the atmosphere and Earth will improve understanding of the forces that drive weather systems and of solar activity on global communications and other technical systems.

  • Invest in new capabilities essential to support interdisciplinary exploration at the poles.

    New scientific discoveries are based in part on the availability of enhanced logistics to provide access to unexplored regions as well as new technologies to provide new types of data. The IPY field component should aggressively seek to further develop innovative strategies for polar exploration.

Recommendation 4: The International Polar Year should be used as an opportunity to design and implement multidisciplinary polar observing networks that will provide a long-term perspective.

  • Design and establish integrated multidisciplinary observing networks that employ new sensing technologies and data assimilation techniques to quantify spatial and temporal change in the polar regions.

    The IPY will provide the integrative basis for advancing system-scale long-term observational capabilities across disciplines. A goal of the IPY should be the design and establishment of a system of integrated multidisciplinary observing networks. New autonomous instrumentation requires development with the harsh polar environment in mind. Instruments required for different types of studies can be clustered together, minimizing the collective environmental risks of survival and encouraging integrated analysis. Common observational protocols, such as observation frequency and measurement precision, will increase the spatial range of the observations and simplify data assimilation. Once established in the IPY, such protocols will serve polar science in the longer term.

Suggested Citation:"7 Actions Needed to Make the International Polar Year Succeed." National Research Council. 2004. A Vision for the International Polar Year 2007-2008. Washington, DC: The National Academies Press. doi: 10.17226/11013.
×
  • Conduct an internationally coordinated “snapshot” of the polar regions using all available satellite sensors.

    Two hallmarks of the IGY were the dawn of the satellite era and the establishment of enduring benchmark datasets. Today’s ever-growing suite of satellite sensors provides unique views of the polar regions with unprecedented detail. Marshaling the collective satellite resources of all space agencies around the world would supply generations of future scientists an unparalleled view of the state of the polar regions during the IPY 2007-2008.

Recommendation 5: The United States should invest in critical infrastructure (both physical and human) and technology to guarantee that the International Polar Year 2007-2008 leaves enduring benefits for the nation and for the residents of northern regions.

  • Ensure the long-term availability of assets necessary to support science in the polar regions, such as ice-capable ships, icebreakers, submarines, and manned and unmanned long-range aircraft.

    Although IPY 2007-2008 is planned as a focused burst of activity with demonstrable results, it should also provide long-term value and leave a legacy of infrastructure and technology that serves a wide range of scientific studies for decades to come.

  • Encourage development of innovative technologies to expand the suite of polar instruments and equipment, such as unmanned aerial vehicles (UAVs), autonomous underwater vehicles (AUVs), and rovers.

    Observational systems for the polar regions can be improved enormously by applying innovative technologies. Recent technological advances in UAVs, AUVs, and robotic rovers can be marshaled and adapted for the IPY to ensure that these platforms enhance IPY research capabilities.

  • Develop advanced communications systems with increased bandwidth and accessibility capable of operating in polar field conditions.

    The innovative technologies and large-scale field operations during IPY 2007-2008 will require advanced communications systems with high-speed, real-time access to communicate and distribute data from both polar regions to the rest of the world.

  • Develop international standards, policies, and procedures that ensure data are easily accessible for the current generation and permanently preserved for future generations.

    The data management systems should provide free and open access to data in standard formats. In addition, extensive metadata should be included to facilitate long-term reanalysis and so that datasets can be used by a variety of users. This effort should include data rescue efforts to expand the data record back in time and ensure that historical data are not lost.

  • Develop the next generation of scientists, engineers, and leaders and include underrepresented groups and minorities.

Suggested Citation:"7 Actions Needed to Make the International Polar Year Succeed." National Research Council. 2004. A Vision for the International Polar Year 2007-2008. Washington, DC: The National Academies Press. doi: 10.17226/11013.
×

Tomorrow’s leaders are in today’s classrooms, and the IPY effort should focus on cultivating an interest in the next generation of scientists, engineers, and leaders to create a lasting legacy.

Recommendation 6: The U.S. International Polar Year effort should excite and engage the public, with the goals of increasing understanding of the importance of polar regions in the global system and, at the same time, advancing general science literacy in the nation.

  • Develop programs in education and outreach that build on the inherent public interest of the polar regions and provide a broad lay audience with a deeper understanding of the polar regions.

    The polar regions have important direct and indirect effects on the rest of the world, and the IPY can help explain the importance of the polar regions to the public.

  • Create opportunities for education, training, and outreach for all age groups and build on successful existing models. Education and outreach during the IPY should include innovative new approaches that are interactive, make use of diverse media, and provide opportunities for hands-on participation by the public.

    The polar regions are inherently exotic to many people—the terrain, the plants, the animals, the weather, the remoteness—and they capture our imagination. This is key to engaging the public. There will be opportunities for formal classroom programs for people of a variety of ages, and media coverage that will provide both entertainment and enjoyable science education.

Recommendation 7: The U.S. science community and agencies should participate as leaders in International Polar Year 2007-2008.

  • Guide and contribute to IPY 2007-2008 activities and help to evolve the international framework, using the IPY as an opportunity to build long-lasting partnerships and cooperation across national borders.

    IPY 2007-2008 is an international effort, with more than 25 nations already committed to participate. Because of the strength of U.S. polar programs, our nation stands to play a leadership role in organizing and carrying out this ambitious program. Planning at the international level is under the auspices of two major organizations, the International Council for Science (ICSU) and the World Meteorological Organization (WMO), and the United States should lead the coordination with other countries through the ICSU and WMO to ensure the success of the IPY.

  • Continue to plan IPY 2007-2008 using an open, inclusive process.

    The initial impetus for organizing IPY 2007-2008 came from the science community, which has come together and worked diligently to identify activities of merit. This open process leverages the intellectual assets of the U.S. science community and should be continued.

  • Coordinate federal efforts to ensure a successful IPY effort, capitalizing on and supporting existing agency missions and creating new opportunities.

Suggested Citation:"7 Actions Needed to Make the International Polar Year Succeed." National Research Council. 2004. A Vision for the International Polar Year 2007-2008. Washington, DC: The National Academies Press. doi: 10.17226/11013.
×

International polar science efforts that have already been planned by the U.S. science community provide models for interagency collaboration, and additional future interagency efforts are encouraged, including coordination with the Arctic Council.

  • Continue planning for IPY 2007-2008, moving toward the creation of a more detailed science implementation plan.

    The next phase of IPY planning will need to provide concrete guidance that defines the science goals and addresses logistics and other key aspects of implementation. This phase of planning should include active participation by the U.S. science community and U.S. funding agencies and also continued efforts to coordinate with international planning activities so that resources are leveraged.

  • Provide mechanisms for individuals, early-career researchers, and small teams to contribute to the IPY.

    The overarching science goals of the IPY are broad and focused on international cooperation, but mechanisms for early-career researchers and small teams must be included in the larger IPY framework.

Suggested Citation:"7 Actions Needed to Make the International Polar Year Succeed." National Research Council. 2004. A Vision for the International Polar Year 2007-2008. Washington, DC: The National Academies Press. doi: 10.17226/11013.
×
Page 73
Suggested Citation:"7 Actions Needed to Make the International Polar Year Succeed." National Research Council. 2004. A Vision for the International Polar Year 2007-2008. Washington, DC: The National Academies Press. doi: 10.17226/11013.
×
Page 74
Suggested Citation:"7 Actions Needed to Make the International Polar Year Succeed." National Research Council. 2004. A Vision for the International Polar Year 2007-2008. Washington, DC: The National Academies Press. doi: 10.17226/11013.
×
Page 75
Suggested Citation:"7 Actions Needed to Make the International Polar Year Succeed." National Research Council. 2004. A Vision for the International Polar Year 2007-2008. Washington, DC: The National Academies Press. doi: 10.17226/11013.
×
Page 76
Suggested Citation:"7 Actions Needed to Make the International Polar Year Succeed." National Research Council. 2004. A Vision for the International Polar Year 2007-2008. Washington, DC: The National Academies Press. doi: 10.17226/11013.
×
Page 77
Suggested Citation:"7 Actions Needed to Make the International Polar Year Succeed." National Research Council. 2004. A Vision for the International Polar Year 2007-2008. Washington, DC: The National Academies Press. doi: 10.17226/11013.
×
Page 78
Suggested Citation:"7 Actions Needed to Make the International Polar Year Succeed." National Research Council. 2004. A Vision for the International Polar Year 2007-2008. Washington, DC: The National Academies Press. doi: 10.17226/11013.
×
Page 79
Next: References »
A Vision for the International Polar Year 2007-2008 Get This Book
×
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

In 2007-2008, many nations around the world will host an intense, coordinated field campaign of polar observations, research, and analysis called the "International Polar Year." This report presents an overview of potential science themes, enabling technologies, and public outreach opportunities that can be used to focus International Polar Year on societal needs. The committee recommends that the U.S. scientific community and participating agencies use this opportunity to better understand environmental change and variability in the polar regions; explore new scientific frontiers ranging from the molecular to the planetary scales; and engage the public through varied educations and outreach activities.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!