of feedback from the child’s response to a question, to the pressures of high-stakes tests on curricular implementation. One can say with equal persuasion that use of a particular set of curricular materials caused the assignment of a student’s score, which caused the student to learn the material in a curriculum. Cause and effect is best used to describe events in a temporal sequence where results can be proximally tied to causes based on the elimination of other sources of effect.

It is worth pointing out that the issues debated by members of this committee are not new, but have a long history in complex fields where the limitations of the scientific method have been recognized for a long time. Ecology, immunology, epidemiology, and neurobiology provide plenty of examples where the use of alternative approaches that include dynamical systems, game theory, large-scale simulations, and agent-based models have proved to be essential, even in the design of experiments. We do not live on a fixed landscape and, consequently, any intervention or perturbation of a system (e.g., the implementation of new curricula) can alter the landscape. The fact that researchers select a priori specific levels of aggregation (often dictated by convenience) and fail to test the validity of their results to such choices is not only common, but extremely limiting (validity).

In addition, we live in a world where knowledge generated at one level (often not the desired level) must be used to inform decisions at a higher level. How one uses scientifically collected knowledge at one level to understand the dynamics at higher levels is still a key methodological and philosophical issue in many scientific fields of inquiry. Genomics, a highly visible field at the moment, offers many lessons. The identification of key genes (and even the mapping of the human genome) is not enough to predict their expression (e.g., cancers) or to have enough knowledge that will help us to regulate them (e.g., cures to disease). “Nontraditional methods” are needed to make this fundamental jump. The evaluation of curricula successes is not a less complex enterprise and no single approach holds the key.

The committee does not need to solve these essential intellectual debates in order to fulfill its charge; rather, it chose to put forward a framework that could support an array of methods and forms of inference and evidence.

The National Academies of Sciences, Engineering, and Medicine
500 Fifth St. N.W. | Washington, D.C. 20001

Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement