ern its behavior. As with the representations described above, embedding the use of the software in a carefully thought out curriculum sequence is crucial to supporting student learning (Hickey et al., 2000).

Another example in biology is the BGuILE project (Reiser et al., 2001). The investigators created a series of structured simulations allowing students to investigate problems of evolution by natural selection. In the Galapagos finch environment, for example, students can examine a carefully selected set of data from the island of Daphne Major to explain a historical case of natural selection. The BGuILE software does not, strictly speaking, consist of simulations because it does not “run” a model; from a student’s perspective, it simulates either Daphne Major or laboratory experiments on tuberculosis bacteria. Studies show that students can learn from the BGuILE environments when these environments are embedded in a well-organized curriculum (Sandoval and Reiser, 2004). They also show that successful implementation of such technology-supported curricula relies heavily on teachers (Tabak, 2004).

Structured Interactions with Complex Phenomena and Ideas

The examples discussed here share a crucial feature. The representations built into the software and the interface tools provided for learners are intended to help them learn in very specific ways. There are a great number of such tools that have been developed over the last quarter of a century. Many of them have been shown to produce impressive learning gains for students at the secondary level. Besides the ones mentioned, other tools are designed to structure specific scientific reasoning skills, such as prediction (Friedler et al., 1990) and the coordination of claims with evidence (Bell and Linn, 2000; Sandoval, 2003). Most of these efforts integrate students’ work on the computer with more direct laboratory experiences. Rather than thinking of these representations and simulations as a way to replace laboratory experiences, the most successful instructional sequences integrate them with a series of empirical laboratory investigations. These sequences of science instruction focus students’ attention on developing a shared interpretation of both the representations and the real laboratory experiences in small groups (Bell, 2005).

Computer Technologies Designed to Support Science

Advances in computer technologies have had a tremendous impact on how science is done and on what scientists can study. These changes are vast, and summarizing them is well beyond the scope of the committee’s charge. We found, however, that some innovations in scientific practice, especially uses of the Internet, are beginning to be applied to secondary



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement