Cover Image


View/Hide Left Panel
  • Science and mathematics master’s programs: Provide grants to research universities to offer, over 5 years, 50,000 current middle school and high school science, mathematics, and technology teachers (with or without undergraduate science, mathematics, or engineering degrees) 2-year, part-time master’s degree programs that focus on rigorous science and mathematics content and pedagogy. The model for this action is the University of Pennsylvania Science Teacher Institute.

  • AP, IB, and pre-AP or pre-IB training: Train an additional 70,000 AP or IB and 80,000 pre-AP or pre-IB instructors to teach advanced courses in science and mathematics. Assuming satisfactory performance, teachers may receive incentive payments of $1,800 per year, as well as $100 for each student who passes an AP or IB exam in mathematics or science. There are two models for this program: the Advanced Placement Incentive Program and Laying the Foundation, a pre-AP program.

  • K–12 curriculum materials modeled on a world-class standard: Foster high-quality teaching with world-class curricula, standards, and assessments of student learning. Convene a national panel to collect, evaluate, and develop rigorous K–12 materials that would be available free of charge as a voluntary national curriculum. The model for this action is the Project Lead the Way pre-engineering courseware.

Action A-3: Enlarge the pipeline of students who are prepared to enter college and graduate with a degree in science, engineering, or mathematics by increasing the number of students who pass AP and IB science and mathematics courses. Create opportunities and incentives for middle school and high school students to pursue advanced work in science and mathematics. By 2010, increase the number of students who take at least one AP or IB mathematics or science exam to 1.5 million, and set a goal of tripling the number who pass those tests to 700,000.4 Student incentives for success would include 50% examination fee rebates and $100 mini-scholarships for each passing score on an AP or IB science or mathematics examination.

Although it is not included among the implementation actions, the committee also finds attractive the expansion of two approaches to improving K–12 science and mathematics education that are already in use:

  • Statewide specialty high schools: Specialty secondary education can foster leaders in science, technology, and mathematics. Specialty schools immerse students in high-quality science, technology, and mathematics education; serve as a mechanism to test teaching materials; provide a training


This sentence was incorrectly phrased in the original October 12, 2005, edition of the executive summary and has now been corrected.

The National Academies of Sciences, Engineering, and Medicine
500 Fifth St. N.W. | Washington, D.C. 20001

Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement