2
Health, Diet, and Eating Patterns of Children and Youth

INTRODUCTION

Over the past four decades, lower rates of nutrient deficiencies, dental caries, infectious diseases, and injuries have all contributed to lower childhood morbidity and mortality and better health for children. In that same period, a troubling new trend has steadily and dramatically emerged, threatening to reverse many of these gains. From 1963 to 2002, rates of obesity tripled for older children ages 6–11 years and adolescents ages 12–19 years. For consistency between Institute of Medicine (IOM) reports, the term obesity is used to refer to children and youth who have a body mass index (BMI) equal to or greater than the 95th percentile of the age- and gender-specific BMI charts developed by the Centers for Disease Control and Prevention (CDC). By this definition, an estimated 9.18 million U.S. children and adolescents ages 6–19 years are considered obese. If obesity levels continue at the current rate, the lifetime risk of being diagnosed with type 2 diabetes at some point in their lives is 30 percent for boys and 40 percent for girls. Moreover, an estimated 1 million 12- to 19-year-old American adolescents have the metabolic syndrome, described later in this chapter.

Health-related behaviors such as eating habits and physical activity patterns develop early in life and often extend into adulthood. They consequently affect risk for a variety of chronic diseases including type 2 diabetes and cardiovascular disease. Parents, communities, government, the public health sector, and health care systems accordingly face the significant challenge of creating a supportive environment in which children can grow up



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement



Below are the first 10 and last 10 pages of uncorrected machine-read text (when available) of this chapter, followed by the top 30 algorithmically extracted key phrases from the chapter as a whole.
Intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text on the opening pages of each chapter. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

Do not use for reproduction, copying, pasting, or reading; exclusively for search engines.

OCR for page 39
Food Marketing to Children and Youth: Threat or Opportunity? 2 Health, Diet, and Eating Patterns of Children and Youth INTRODUCTION Over the past four decades, lower rates of nutrient deficiencies, dental caries, infectious diseases, and injuries have all contributed to lower childhood morbidity and mortality and better health for children. In that same period, a troubling new trend has steadily and dramatically emerged, threatening to reverse many of these gains. From 1963 to 2002, rates of obesity tripled for older children ages 6–11 years and adolescents ages 12–19 years. For consistency between Institute of Medicine (IOM) reports, the term obesity is used to refer to children and youth who have a body mass index (BMI) equal to or greater than the 95th percentile of the age- and gender-specific BMI charts developed by the Centers for Disease Control and Prevention (CDC). By this definition, an estimated 9.18 million U.S. children and adolescents ages 6–19 years are considered obese. If obesity levels continue at the current rate, the lifetime risk of being diagnosed with type 2 diabetes at some point in their lives is 30 percent for boys and 40 percent for girls. Moreover, an estimated 1 million 12- to 19-year-old American adolescents have the metabolic syndrome, described later in this chapter. Health-related behaviors such as eating habits and physical activity patterns develop early in life and often extend into adulthood. They consequently affect risk for a variety of chronic diseases including type 2 diabetes and cardiovascular disease. Parents, communities, government, the public health sector, and health care systems accordingly face the significant challenge of creating a supportive environment in which children can grow up

OCR for page 39
Food Marketing to Children and Youth: Threat or Opportunity? in a way that maximizes their chances for a healthy life. As a result of the distinct trend toward the onset of chronic disease risks much earlier in life, dietary guidance for children and youth has evolved from an historic emphasis on ensuring nutrient and energy (calorie) adequacy to meet basic metabolic needs to the more recent focus on ensuring dietary quality while avoiding calorie excesses. The current goal is to promote a lifestyle for children and youth that incorporates nutrient-dense foods and beverages into their diet, and balances their calorie consumption with levels of physical activity sufficient to create energy balance at a healthy weight.1 This chapter provides an overview of the dietary intake, eating patterns, and sources of nutrients for infants and toddlers, younger children, school-aged children, and adolescents. It examines how nutrient and food intakes compare to reference standards and guidelines, and it also addresses regional and income-related differences in food consumption and nutrient intake. OVERVIEW OF CHILDREN’S HEALTH AND DIET Public health and technological improvements over the past century have enhanced the survival and health of infants, school-aged children, and adolescents in the United States (NRC and IOM, 2004). Widespread access to potable water, vaccines, and antibiotics has reduced child morbidity and mortality rates attributed to infectious diseases (CDC, 1999; IOM, 2005b). Safety initiatives targeted to motor vehicles and children’s home and recreational environments have led to a 39 percent decline in unintentional injury deaths among children ages 14 and under from 1987 to 2000 (National SAFE KIDS Campaign, 2003). The introduction of various fluoride vehicles through municipal water systems and other sources has prompted a substantial decline in dental caries in children over the past two decades (DHHS, 2000b; Dye et al., 2004). The health and nutritional well-being of millions of Americans have benefited from a number of interventions, including the fortification of the food supply with essential micronutrients such as B vitamins, iron, iodine, and folic acid (Hetzel and Clugston, 1999; Honein et al., 2001; IOM, 2003; Park et al., 2000; Pfeiffer et al., 2005). The diets of low-income families, their infants, and school-aged children have improved through the creation and expanded coverage of domestic food assistance programs to increase 1   Growing children, even those at a healthy body weight, must be in a slightly positive energy balance to satisfy the additional calorie needs of tissue deposition for normal growth. However, for the purpose of simplicity in this report, the committee uses the term energy balance in children and youth to indicate an equality between energy intake and energy expenditure that supports normal growth without promoting excess weight gain and body fat.

OCR for page 39
Food Marketing to Children and Youth: Threat or Opportunity? food security, such as the Special Supplemental Nutrition Program for Women, Infants, and Children (WIC), the National School Meals Program, and the Food Stamp Program (IOM, 2005b,c; USDA, 2005c); and improved state health insurance coverage for children living in poor families (Cohen and Bloom, 2005; Wise, 2004). The outcomes have been linked to increased birth weights (IOM, 2005c), and a steady decline in the prevalence of micronutrient-deficiency diseases in childhood such as rickets, pellagra, goiter, iron-deficiency anemia, and neural tube defects (CDC, 1999, 2002; Honein et al., 2001). Obesity Although the health of children and youth has improved in many respects, they face new diet-related health problems today that were unexpected just a generation ago. The increasing prevalence over the past three decades of children who are obese, defined in this report as children and youth who have a BMI equal to or greater than the 95th percentile of the age- and gender-specific BMI charts developed by the CDC, and those who are at risk for becoming obese, defined in this report as children and youth who have a BMI between the 85th and 95th percentile of the age- and gender-specific CDC BMI charts, makes it the most common serious contemporary public health concern faced by young people in the United States (IOM, 2005b; Land, 2005). The average weight for a 10-year-old boy increased from 74.2 pounds in 1963 to nearly 85 pounds in 2002. The average weight for a 10-year-old girl went from 77.4 pounds to an estimated 88 pounds. The average 15-year-old boy weighed 135.5 pounds in 1966, and 150.3 pounds in 2002. The average weight of a 15-year-old girl rose from 124.2 pounds to 134.4 pounds during the same time frame (Ogden et al., 2004). The trends are similar for American adults. Improved nutrition has helped them grow taller over the past four decades, but it has also made them heavier. Adults are an average of 1 inch taller than they were in the 1960s but about 25 pounds heavier (Ogden et al., 2004). Obesity has both short- and long-term consequences for children’s emotional health and physical and social functioning and well-being (IOM, 2005b; Williams et al., 2005). Obesity also produces significant burdens on the health care system. Obesity-associated annual hospital costs for children and adolescents more than tripled over two decades, rising from $35 million (1979–1981) to $127 million (1997–1999, based on 2001 dollars) (Wang and Dietz, 2002). After adjusting for inflation and converting to 2004 dollars, the national direct and indirect health care expenditures associated with adult overweight and obesity range from $98 billion to $129 billion (IOM, 2005b). If the childhood obesity epidemic continues at its current rate, conditions related to type 2 diabetes, such as blindness,

OCR for page 39
Food Marketing to Children and Youth: Threat or Opportunity? coronary artery disease, stroke, and kidney failure, may become ordinary conditions in middle age (IOM, 2005b). Between 1999 and 2002, the prevalence of obesity was 10.3 percent for younger children ages 2–5 years, 15.8 percent among children ages 6–11 years, and 16.1 percent among adolescents ages 12–19 years (Hedley et al., 2004). Overall, 31 percent of U.S. children and adolescents are either obese (16 percent) or at risk of becoming obese (15 percent)—figures that are three and six times greater than the Healthy People 2010 goal of 5 percent (DHHS, 2000a; Hedley et al., 2004). Since the 1970s, the rate of obesity has more than doubled for preschool children ages 2 to 5 years (IOM, 2005b; Ogden et al., 2003). As shown in Figure 2-1, between 1963 and 2002, obesity rates tripled for older children ages 6–11 years and youth ages 12–19 years (CDC, 2005). More than 9 million U.S. children and adolescents ages 6–19 years are considered to be obese (CDC, 2004). Leaner children and youth have remained more or less the same weight, FIGURE 2-1 Prevalence of obesity among U.S. children and adolescents by age group and selected period, 1963–2002. NOTE: In this report, children with a body mass index (BMI) value at or above the 95th percentile of the CDC age- and gender-specific BMI curves for 2000 are referred to as obese, and children with a BMI value between the 85th percentile and 95th percentile are referred to as at risk for becoming obese. These cut-off points correspond to the terms, overweight and at risk for overweight, used for children and youth by the CDC. SOURCE: CDC (2005).

OCR for page 39
Food Marketing to Children and Youth: Threat or Opportunity? but those in the upper percentiles of the BMI charts are heavier. The CDC compiled BMI charts on the basis of combined survey data from several nationally representative cross-sectional samples of the U.S. population that were collected between 1963 and 1980.2 It is notable that the BMI levels for children in the lower part of the BMI chart distribution (the 5th to the 50th percentiles) remained stable when comparing the national surveys (Flegal and Troiano, 2000). Thus, a child in the 1990s who is at or below the 50th percentile is more likely to have a similar BMI when compared to a child in the 1970s; however, a child in the 1990s who is at or above the 85th percentile is more likely to have a significantly higher BMI when compared to a cohort from the 1970s. Related Chronic Disease Risk Even among children and youth who are not obese, diets too high in saturated fats, trans fat, and sodium predispose them to the risk of heart disease, stroke, and certain cancers. Moreover, approximately 1 million 12-to 19-year-olds in the United States have the metabolic syndrome (AHA, 2005; Cook et al., 2003), defined as having three or more of the following abnormalities: blood triglyceride level of 110 milligrams per deciliter (mg/ dL) or higher; high-density lipoprotein levels of 40 mg/dL or lower; elevated fasting glucose of 110 mg/dL or higher; blood pressure above the 90th percentile for age, sex, and height; and waist circumference at or above the 90th percentile for age and sex. About 30 percent of obese adolescents will develop the metabolic syndrome, and nearly two-thirds who develop the syndrome are obese (AHA, 2005). In adults, the metabolic syndrome is associated with type 2 diabetes (Cook et al., 2003; Haffner et al., 1992), cardiovascular disease (Cook et al., 2003; Isomaa et al., 2001), and a higher mortality rate (Cook et al., 2003; Lakka et al., 2002). Even among those obese youth who do not yet have clinical diabetes, components of the metabolic syndrome appear to contribute to the development of atherosclerosis (Berenson et al., 1998; Mahoney et al., 1996; McGill et al., 2002). The association of childhood and youth obesity with the metabolic syndrome, rather than exclusively with diabetes, may present the greatest physical health threat of childhood obesity. 2   Because of the increases in bodyweight that occurred in the 1980s and 1990s, the CDC decided not to include the National Health and Nutrition Examination Study (NHANES) III (1988–1994) body weight data in the revised year 2000 charts of BMI standards for children ages 6 years or older. The NHANES III data would have shifted the curves (weight-for-age and BMI-for-age) upward, erroneously conveying a range of appropriateness to the higher weights.

OCR for page 39
Food Marketing to Children and Youth: Threat or Opportunity? Micronutrient Inadequacies Although progress has been made in certain areas, subgroups of children and adolescents still experience micronutrient inadequacies that may adversely affect their health, particularly insufficient intakes of vitamins A, E, B6, and folate as well as calcium, iron, potassium, zinc, and magnesium (DHHS and USDA, 2004; Ganji et al., 2003; IOM, 2005c). Inadequate dietary calcium intake combined with physical inactivity during childhood, adolescence, and early adulthood compromises peak bone mass and contributes to bone resorption and bone diseases, including osteomalacia and osteoporosis in later adulthood (NIH, 2001). Young adults who do not reach a normal peak bone mass by 20 years of age have the greatest risk of developing osteoporosis in later years (Beck and Shoemaker, 2000). Osteoporosis is a serious health problem for today’s youth that has been associated with a decline in calcium intake (NIH, 2001), attributed in part to increased consumption of sweetened beverages (such as carbonated soft drinks, fruit drinks, and sweetened teas) and reduced consumption of milk—the primary source of calcium in U.S. children’s and adolescents’ diets (AAP, 2004; Fisher et al., 2004; Mrdjenovic and Levitsky, 2003). Studies suggest that a higher consumption of carbonated beverages in adolescent girls may be associated with incidence of bone fracture (Wyshak, 2000). Moreover, rickets among infants is attributed to inadequate vitamin D intake and reduced exposure to sunlight, and remains a problem in the United States. For example, reemergence of nutritional rickets has been reported in some African American infants3 (Weisberg et al., 2004). Dental Caries Diets high in added sugars also predispose to dental caries. Although the prevalence of dental caries has decreased in the United States, in particular due to topical and water supply fluoridation, lack of access to care has contributed to declines in dental visits and increased rates of untreated dental caries for children and adolescents (DHHS, 2000b; Gift et al., 1996). More than one-half of low-income children without health insurance had no preventive dental care visits (Kenney et al., 2005). The Surgeon General’s 3   The American Academy of Pediatrics (AAP) recommends that all infants, including those who are exclusively breastfed, receive a minimum intake of 200 international units (IU) of vitamin D daily beginning during the first 2 months of life. Additionally, the AAP recommends that an intake of 200 IU of vitamin D be continued throughout childhood and adolescence because adequate sunlight exposure is not easily determined for an individual (Gartner et al., 2003). Daily sunlight exposure to skin allows the human body to convert vitamin D to a biologically active form that is absorbed by the lower intestine and metabolized with dietary calcium to prevent rickets (IOM, 1997).

OCR for page 39
Food Marketing to Children and Youth: Threat or Opportunity? Report on Oral Health in America (DHHS, 2000b) has documented that despite progress in reducing dental caries, children and adolescents in families living below the poverty level experience more dental decay than those in higher socioeconomic levels. In addition, the proportion of teeth affected by dental caries varies by age and race/ethnicity. Poor Mexican-American children ages 2–9 have the highest proportion of untreated decayed teeth (70.5 percent), followed by poor African-American children (67.4 percent), as compared to poor white children (57.2 percent). Poor adolescents ages 12–17 years in each racial/ethnic group have a higher percentage of untreated decayed primary teeth than their peers who do not live in poverty (DHHS, 2000b). Changes in dietary patterns of younger children ages 2–5 years (e.g., increased frequency of sweetened snacks) may also contribute to the reversal of oral health benefits of fluoridation observed since the 1980s (Dye et al., 2004). DIETARY RECOMMENDATIONS AND GUIDELINES A healthful diet for children and adolescents provides recommended amounts of nutrients and other food components within estimated energy requirements (EER)4 to promote normal growth and development, a healthy weight trajectory, and energy balance.5 A healthful diet also reduces the long-term risk for obesity and related chronic diseases associated with aging, including type 2 diabetes and the metabolic syndrome (IOM, 2005b). Thirty years ago, diet quality for children and youth focused on the consumption of a sufficient and balanced intake of foods providing calories, protein, and micronutrients to prevent deficiency diseases. Today, by contrast, dietary quality emphasizes the principles of adequacy, variety, proportionality, and moderation, as well as reinforcing recommendations for a high intake of fruits, vegetables, and whole grains; nutrient-dense foods providing sufficient calories that are balanced with daily physical activity levels; and limited consumption of total fat, saturated fat, trans fatty acids, cholesterol, sodium, and added sugars (DHHS and USDA, 2005). The average healthy child ages 2 to 5 years gains 4.5 to 6.5 pounds and grows 2.5 to 3.5 inches each year (Story et al., 2003). Child growth continues at a slow and steady rate until the onset of puberty in late middle childhood or early adolescence. A healthy child’s appetite and food intake 4   Estimated energy requirements (EER) are available for children and youth ages 2–18 years and calculated based gender, age, and three different activity levels (IOM, 2002–2005; Appendix D-1). 5   In this report, energy balance in children and youth refers to a state in which energy intake equals energy expenditure; energy balance supports normal growth and development without promoting excess weight gain and body fat.

OCR for page 39
Food Marketing to Children and Youth: Threat or Opportunity? varies with the rate of growth, which occurs unevenly in spurts and periods of slower growth. The growth that occurs during adolescence is significant and comparable to the growth that occurs during the first year of life. During adolescence, nutrition needs are higher than during any other period of the lifecycle. Puberty is when adolescents gain approximately 50 percent of their adult body weight, accumulate an estimated 40–45 percent of skeletal muscle mass, and achieve the final 15–20 percent of their linear growth (Shils et al., 1999; Story et al., 2003). National dietary recommendations and guidelines established for the American population have been used to assess the diets of children and youth. These recommendations and guidelines collectively include the Dietary Reference Intakes (DRIs), the Dietary Guidelines for Americans, and the Food Guide Pyramid (FGP) and MyPyramid. Dietary Reference Intakes The DRIs is a term used for a set of distinct, nutrient-based reference values that are based on scientifically grounded relationships between nutrient intake and indicators of good health and chronic disease prevention (IOM, 1997, 1998, 2001, 2002–2005, 2005a). The DRIs, which replaced the former Recommended Dietary Allowances in the United States (NRC, 1989), include values for the following: Estimated Average Requirement (EAR), which is the nutrient intake level estimated to meet the requirements of half the healthy individuals in a given life stage and gender group for a specific indicator or outcome; it is the median of a distribution and can be used to estimate the prevalence of inadequacy in a group; Recommended Dietary Allowance (RDA), which is a nutrient intake level estimated to meet the needs of nearly all individuals (97.5 percent) within a given life stage and gender group, and is calculated as two standard deviations above the EAR; Adequate Intake (AI),6 which is a nutrient intake level based on observed or experimentally derived estimates of nutrient intake of healthy 6   Mean usual intake at or greater than the AI is equated with a low prevalence of inadequate nutrient intakes, especially when the AI is based on the mean intake of a healthy group. Unlike an EAR, an AI value cannot be used to estimate the prevalence of nutrient inadequacy in a population. If at least 50 percent of the gender or age group has intakes greater than the AI, then the prevalence of inadequacy should be low. If less than 50 percent have intakes greater than the AI, then no conclusion can be drawn about the prevalence of nutrient inadequacy in a population group.

OCR for page 39
Food Marketing to Children and Youth: Threat or Opportunity? people and used as a guide for individual intake when there is insufficient scientific evidence to calculate an RDA for a specific nutrient; and Tolerable Upper Intake Level (UL), which is based on a risk assessment model and used in the highest average daily intake likely to pose no risk of adverse health effects. The DRI report series was released by the IOM between 1997 and 2004. The 2002–2005 IOM report provided EER levels, which are suggested calorie7 intakes based on age, sex, and physical activity level, and DRIs for carbohydrate and fat (including saturated, unsaturated, and trans fats), cholesterol, total protein, and individual amino acids (IOM, 2002–2005). This report introduced the concept of an Acceptable Macronutrient Distribution Range (AMDR), representing a range of intakes for carbohydrates, fats, and protein expressed as a percentage of calorie intake. Consumption outside the AMDR is associated with an increased risk of chronic disease and insufficient nutrient intake (IOM, 2002–2005). Energy intakes based on the EER for proposed food consumption patterns have been developed for boys and girls ages 2 to 18 years for three physical activity levels—sedentary, low active, and active (USDA, 2003a; Appendix D, Table D-1). The DRI report on electrolytes and water provides total water AI levels for children and adolescents of different ages, which can be used as guidelines for total fluid intake obtained from beverages and foods (IOM, 2005a). Macronutrient and micronutrient recommendations for children and adolescents from the DRI reports are summarized in Appendix D, Tables D-2 and D-3. Many EAR, RDA, and AI levels for children and adolescents are estimates or extrapolations from data on adults (IOM, 1997, 1998, 2001, 2002–2005). Finding: More certain determinations of nutritional requirements for children and adolescents await the development of better techniques and data sets. Dietary Guidelines for Americans The Dietary Guidelines for Americans are developed jointly by the U.S. Department of Health and Human Services (DHHS) and the U.S. Department of Agriculture (USDA) and draw from recommendations of a nonfederal Dietary Advisory Committee. The Dietary Guidelines for Americans present summary dietary recommendations for the public based on current scientific evidence and medical knowledge. They represent the government 7   In this report, the term calories is used synonymously with kilocalories.

OCR for page 39
Food Marketing to Children and Youth: Threat or Opportunity? BOX 2-1 2005 Dietary Guidelines for Americans Consume a variety of nutrient-dense foods and beverages within and among the basic food groups while choosing foods that limit the intake of saturated and trans fats, cholesterol, added sugars, salt, and alcohol. Meet recommended intakes within calorie needs by adopting a balanced eating pattern, such as the U.S. Department of Agriculture Food Guide Pyramid or the Dietary Approaches to Stop Hypertension (DASH) Eating Plan. For weight management, maintain body weight in a healthy range and balance calories from foods and beverages with calories expended. To prevent gradual weight gain over time, make small decreases in food and beverage calories and increase physical activity. SOURCE: DHHS and USDA (2005). policy document on dietary practices and are mandated to be promoted in all federal nutrition education programs. Initially published in 1980, they are revised every 5 years. The sixth edition was released in 2005. The key recommendations of the Dietary Guidelines, summarized in Box 2-1, are based on a preponderance of the scientific evidence of nutritional factors that are important in lowering the risk of chronic disease and promoting health, including specific recommendations for weight management, physical activity, food safety, and consumption patterns among food groups, saturated fats, trans fats, cholesterol, sugars, other carbohydrates, sodium and potassium, and alcoholic beverages (DHHS and USDA, 2005). Food Guide Pyramid and MyPyramid The FGP is an educational tool for the public that was designed by the USDA in 1992 as the graphic representation of the Dietary Guidelines for Americans. It takes the Dietary Guidelines, along with the Recommended Dietary Allowances, and translates them into servings from various food groups with the goal of promoting a healthful diet for the U.S. population. The qualitative dietary guidance depicted by the FGP is based on the principles of balance, variety, proportionality, and moderation (USDA, 1992, 1996). The FGP for Young Children is similar in content to the FGP but was adapted for younger children ages 2 to 6 years, and recommended fewer serving sizes from certain food groups (USDA, 2003b). In 2005, an interactive food guidance system, MyPyramid, was re-

OCR for page 39
Food Marketing to Children and Youth: Threat or Opportunity? leased that replaced the existing FGP (USDA, 2005b). MyPyramid is a component of an overall food guidance system that emphasizes a more individualized approach to improving diet and lifestyle. In particular, it offers personalized recommendations for the types and amounts of food for individuals to consume each day, recommends gradual improvement in daily diet and lifestyle habits including physical activity, and underscores the principles of variety, moderation, and proportionality. A child-friendly version of MyPyramid was recently released to reach children ages 6–11 years with targeted messages about the importance of making healthful eating and physical activity choices and an interactive computer game to apply these messages (USDA, 2005b). Linked to MyPyramid is the MyPyramid Tracker, which has two components—assessment of food intake and physical activity. The food intake assessment component incorporates what was previously the Interactive Healthy Eating Index (HEI) as an online educational tool for individuals who would like to assess their dietary intake according to MyPyramid and the Dietary Guidelines for Americans (USDA, 2005a). The USDA and other researchers use the HEI for research and assessment purposes to assess and monitor diet quality of the U.S. population according to the Dietary Guidelines for Americans and to investigate relationships between diet and health (USDA, 2005d). The HEI evaluates food consumption patterns against the FGP recommendations using five food-based components (grains, vegetables, fruits, dairy, and meat) and it uses four nutrient-based components to assess adherence to recommendations in the 2000 Dietary Guidelines for Americans for maximum daily intake of total fat and saturated fat, as well as the IOM recommendations for daily cholesterol and sodium (Basiotis et al., 2002; Lin, 2005).8 WHAT CHILDREN AND YOUTH EAT The Dietary Guidelines Advisory Committee Report (DHHS and USDA, 2004) noted that, based on available food consumption data, children’s and adolescents’ dietary intakes of saturated fatty acids, trans fatty acids, and sodium are higher than recommended (DHHS and USDA, 2004). Additionally, the rising prevalence of obesity in children and adolescents of all ages and across all ethnic groups over the past four decades indicates that their calorie intakes are not balanced with their energy expenditure levels over 8   The HEI is being updated by the USDA Center for Nutrition Policy and Promotion to reflect the 2005 Dietary Guidelines for Americans. It should be completed by early 2006 (USDA, 2005c). The food intake assessment component of MyPyramid Tracker will be updated in 2006 to reflect the new HEI.

OCR for page 39
Food Marketing to Children and Youth: Threat or Opportunity? and free meals in the NSLP and SBP; those in the low-income group were eligible for reduced-price meals. Slightly more children in the lowest income group consumed fewer than three meals per day than those in the higher income group (39 versus 34 percent), and slightly fewer had breakfast (44 versus 48 percent). Only 14 percent of children in the lowest income group met the Dietary Guidelines for total fat (no more than 30 percent of calories) compared to 10 percent in the low-income group and 22 percent in the higher income group. The available evidence reveals that compared with the higher income group, slightly more of the lowest income children consumed less than three meals per day and did not eat breakfast; they had lower intakes of calcium and higher intakes of total fat, saturated fat, and sodium. Few of the children had good diets based on the HEI (Fox and Cole, 2004). The prevalence of iron deficiency19 has decreased in the United States (Sherry et al., 2001). This decrease is attributed in part to the widespread use and greater bioavailability of iron-fortified foods and infant formula (IOM, 2005c; Sherry et al., 2001). However, iron deficiency remains a nutritional concern for toddlers and younger children, especially low-income and minority children, and adolescent girls (CDC, 2002; DHHS, 2000a; IOM, 2005c; Looker et al., 1997). Although iron-deficiency anemia is uncommon in the United States, population levels of iron deficiency exceed the Healthy People 2010 objectives of 5 percent for toddlers, 1 percent for younger children, and 7 percent for adolescent girls (DHHS, 2000a). Iron-deficiency anemia is associated with low energy levels, reduced attention span, compromised cognitive performance, developmental delays, and poor educational achievement (IOM, 2001; Pollitt, 1993). Finding: Certain subgroups, such as low-income and minority children and adolescent girls, have inadequate dietary intakes of specific micronutrients (e.g., vitamins D and B6, folate, iron, zinc, and magnesium). Regional Patterns The NFCS, CSFII, and NHANES provide dietary information for a nationally representative sample of the U.S. civilian, noninstitutionalized population and were not designed to evaluate specific regional differences in dietary habits. Other studies have provided insights into regional differences, especially in selected southern states. 19   Iron deficiency is defined as an abnormal value for at least two of three indicators (e.g., serum ferritin, transferrin saturation, and free erythrocyte protoporphyrin) (CDC, 2002).

OCR for page 39
Food Marketing to Children and Youth: Threat or Opportunity? The Foods of Our Delta Study was a cross-sectional survey of a culturally diverse population residing in the Lower Mississippi Delta region of Arkansas, Louisiana, and Mississippi (Champagne et al., 2004). Calorie intake did not differ between the children ages 3–18 years in the Delta and CSFII 1994–1996 and 1998.20 Average intakes of folate were consistently higher in the Delta children due to the mandatory fortification of enriched grain products that occurred between the time of the national survey and the Delta Study. The average food and nutrient intakes of African American children in the Delta region were similar to those of African American children in the U.S. population, with the only difference being fewer servings of RTE cereals in the Delta region. However, intakes for white children in the Delta Study were significantly lower for dietary fiber, vitamin A, carotene, riboflavin, vitamin B6, vitamin C, calcium, and iron than for the white U.S. population, and more similar to intakes for African American children both in the Delta region and nationally—except for vitamin C, which was lower, and calcium, which was higher, for whites. Lower intakes of RTE breakfast cereals, fruit, vegetables, and dairy foods accounted for the lower nutrient intakes of the white Delta children. White Delta children had higher added sugar intakes than those in the U.S. population. Overall the intake of fruits, vegetables, and dairy products was poor for the children in the Delta region—similar to children in the U.S. population in general. Data from the Bogalusa Heart Study21 provide additional insight into dietary patterns of children (ages 10 years) residing in the South, including trends from 1973 to 1994. The trends in general are consistent with national trends, with a few notable exceptions. For example, the percentage of Bogalusa children consuming desserts and candy and the mean gram amount consumed, decreased significantly, although they have increased nationally (Nicklas et al., 2004a). Similar to national trends, however, the mean amount consumed increased for cheese, salty snacks, and sweetened beverages, and decreased for milk. Unlike the national population, though, the increase in overall sweetened beverage intake in Bogalusa was due to an increase in the amount of tea with sugar consumed, as the amount of fruit drinks and carbonated soft drinks did not change significantly (Rajeshwari et al., 2005). Examination of the sweetened beverage data from Bogalusa by tertiles of consumption revealed no significant change in mean consumption be- 20   Dietary information in the Foods of Our Delta Study was obtained by methods similar to those used in CSFII 1994–1996 and 1998 (Champagne et al., 2004). 21   A total of 1,548 10-year-old children, attending fifth grade in the Bogalusa, LA, school system, participated in one of seven cross-sectional surveys from 1973 to 1994 (Nicklas et al., 2004a). Dietary information was collected by a single 24-hour recall.

OCR for page 39
Food Marketing to Children and Youth: Threat or Opportunity? tween 1973 and 1994 by children in the low tertile (68 g versus 77 g), but an increase for those in the middle (325 g versus 408 g) and high (770 g versus 868 g) tertiles. The total amount of milk consumption was significantly lower (~20 percent) in the middle and high sweetened beverage consumption groups compared to the low or no sweetened beverage consumption groups (Rajeshwari et al., 2005). The percentage of Bogalusa children who skipped breakfast increased from 8 percent in 1973 to 30 percent in 1978, but decreased to 13 percent after the introduction of the SBP in 1981 (Nicklas et al., 2004b), a level lower than that observed nationally. Also unlike national trends, the percentage of children consuming snacks as well as total eating episodes decreased. On the other hand, similar to national trends, the percentage of Bogalusa children consuming a dinner at home decreased and those consuming a dinner prepared outside the home or a meal at a restaurant increased. SUMMARY The committee’s review of the health, diet, and eating patterns of children and youth finds several issues and trends relevant to its consideration of the potential for marketing practices to influence these patterns. Children and youth today face new diet-related health problems that were unexpected just a generation ago. The increased prevalence of obesity and type 2 diabetes and the growing incidence of the metabolic syndrome in children and adolescents of all ages and across all ethnic groups have the potential to affect health gains that children have experienced in other dimensions over the past 30–40 years. Children and adolescents today have higher than recommended intakes of saturated fatty acids, trans fatty acids, and sodium. Moreover, dietary intakes of calcium, potassium, fiber, magnesium, and vitamin E are sufficiently low to warrant concern. Adolescent girls of childbearing age and low-income toddlers are especially at risk of inadequate intake of iron. Furthermore, recent trends in child health disparities reveal that social disparities persist despite significant improvements in absolute levels of child health. Children who live in poverty experience greater health, social, and nutrition disparities when compared with middle- and high-income children. The nutrient intakes of children and adolescents reflect their food and beverage choices, which have changed substantially over time. A healthful diet provides recommended amounts of nutrients and other food components within estimated calorie needs to promote normal growth and development, a healthy weight trajectory, and caloric balance. Yet, current consumption patterns suggest disproportionately low intakes of fruits, veg-

OCR for page 39
Food Marketing to Children and Youth: Threat or Opportunity? etables, legumes, whole grains, and dairy products, and disproportionately high intakes of high-calorie and low-nutrient foods and beverages. REFERENCES AAP (American Academy of Pediatrics). 2001. The use and misuse of fruit juice in pediatrics. Pediatrics 107(5):1210–1213. AAP. 2004. Soft drinks in schools. Pediatrics 113(1):152–154. Affenito SG, Thompson DR, Barton BA, Franko DL, Daniels SR, Obarzanek E, Schreiber GB, Striegel-Moore RH. 2005. Breakfast consumption by African-American and white adolescent girls correlates positively with calcium and fiber intake and negatively with body mass index. J Am Diet Assoc 105(6):938–945. AHA (American Heart Association). 2005. Heart Disease and Stroke Statistics—2005 Update. Dallas, TX: AHA. [Online]. Available: http://www.americanheart.org/downloadable/heart/1105390918119HDSStats2005Update.pdf [accessed April 23, 2005]. Alaimo K, Olson CM, Frongillo EA Jr. 2001a. Food insufficiency and American school-aged children’s cognitive, academic, and psychosocial development. Pediatrics 108(1):44–53. Alaimo K, Olson CM, Frongillo EA Jr. 2001b. Low family income and food insufficiency in relation to overweight in US children: Is there a paradox? Arch Pediatr Adolesc Med 155(10):1161–1167. Alaimo K, Olson CM, Frongillo EA. 2002. Family food insufficiency, but not low family income, is positively associated with dysthymia and suicide symptoms in adolescents. J Nutr 132(4):719–725. Albertson AM, Anderson GH, Crockett SJ, Goebel MT. 2003. Ready-to-eat cereal consumption: Its relationship with BMI and nutrient intake of children ages 4 to 12 years. J Am Diet Assoc 103(12):1613–1619. Allison DB, Egan K, Barra LM, Caughman C, Infante M, Heimbach JT. 1999. Estimated intakes of trans fatty and other fatty acids in the US population. J Am Diet Assoc 99(2):166–174. Bandini LG, Must A, Cyr H, Anderson SE, Spadano JL, Dietz WH. 2003. Longitudinal changes in the accuracy of reported energy intake in girls 10–15 y of age. Am J Clin Nutr 78(3):480–484. Barton BA, Eldridge AL, Thompson D, Affenito SG, Striegel-Moore RH, Franko DL, Albertson AM, Crockett SJ. 2005. The relationship of breakfast and cereal consumption to nutrient intake and body mass index: The National Heart, Lung, and Blood Institute Growth and Health Study. J Am Diet Assoc 105(9):1383–1389. Basiotis PP, Carlson A, Gerrior SA, Juan WY, Lino M. 2002. The Healthy Eating Index: 1999–2000. U.S. Department of Agriculture, Center for Nutrition Policy and Promotion. Report No. CNPP-12. [Online]. Available: http://www.usda.gov/cnpp/Pubs/HEI/HEI99-00report.pdf [accessed March 15, 2005]. Beck BR, Shoemaker MR. 2000. Osteoporosis: Understanding key risk factors and therapeutic options. The Physician and Sports Medicine 28(2). Berenson GS, Srinivasan SR, Bao W, Newman WP III, Tracy RE, Wattigney WA. 1998. Association between multiple cardiovascular risk factors and atherosclerosis in children and young adults: The Bogalusa Heart Study. N Engl J Med 338(23):1650–1656. Block G. 2004. Foods contributing to energy intake in the US: Data from NHANES III and NHANES 1999–2000. J Food Comp Analysis 17(3-4):439–447. Briefel RR, Johnson CL. 2004. Secular trends in dietary intake in the United States. Annu Rev Nutr 24:401–431.

OCR for page 39
Food Marketing to Children and Youth: Threat or Opportunity? Briefel R, Reidy K, Karwe V, Jankowski L, Hendricks K. 2004. Toddlers’ transition to table foods: Impact on nutrient intakes and food patterns. J Am Diet Assoc 104(1 Suppl): S38–S44. Capps O Jr, Clauson A, Guthrie J, Pittman G, Stockton M. 2005. Contributions of Nonalcoholic Beverages to the U.S. Diet. U.S. Department of Agriculture. Economic Research Service. Economic Research Report No. 1. [Online]. Available: http://www.ers.usda.gov/publications/err1/err1.pdf [accessed April 26, 2005]. Carriquiry AL, Kodd KW, Nusser SM. 1997. Estimating Adjusted Intake and Biochemical Measurement Distributions for NHANES III. Hyattsville, MD: National Center for Health Statistics. Casey PH, Szeto K, Lensing S, Bogle M, Weber J. 2001. Children in food-insufficient, low-income families: Prevalence, health, and nutrition status. Arch Pediatr Adolesc Med 155(4):508–514. Cavadini C, Siega-Riz AM, Popkin BM. 2000. US adolescent food intake trends from 1965 to 1996. Arch Dis Child 83(1):18–24. CDC (Centers for Disease Control and Prevention). 1999. Ten great public health achievements—United States, 1990–1999. MMWR 48(12):241–243. CDC. 2002. Iron deficiency—United States, 1999–2000. MMWR 51(40):897–899. [Online]. Available: http://www.cdc.gov/mmwr/preview/mmwrhtml/mm5140a1.htm [accessed April 24, 2005]. CDC. 2004. Obesity Still a Major Problem, New Data Show. National Center for Health Statistics. [Online]. Available: http://www.cdc.gov/nchs/pressroom/04facts/obesity.htm [accessed November 3, 2004]. CDC. 2005. QuickStats: Prevalence of overweight among children and teenagers, by age group and selected period—United States, 1963–2002. MMWR 54(8):203. [Online]. Available: http://www.cdc.gov/mmwr/preview/mmwrhtml/mm5408a6.htm [accessed March 9, 2005]. Champagne CM, Baker NB, DeLany JP, Harsha DW, Bray GA. 1998. Assessment of energy intake underreporting by doubly labeled water and observations on reported nutrient intakes in children. J Am Diet Assoc 98(4):426–433. Champagne CM, Bogle ML, McGee BB, Yadrick K, Allen HR, Kramer TR, Simpson P, Gossett J, Weber J. 2004. Dietary intake in the lower Mississippi delta region: Results from the Foods of Our Delta Study. J Am Diet Assoc 104(2):199–207. Cohen RA, Bloom B. 2005. Trends in health insurance and access to medical care for children under age 19 years: United States, 1998–2003. Advance Data from Vital and Health Statistics, No. 355. Hyattsville, MD: National Center for Health Statistics. [Online]. Available: http://www.cdc.gov/nchs/data/ad/ad355.pdf [accessed April 18, 2005]. Cole N, Fox MK. 2004. Nutrition and Health Characteristics of Low-Income Participants. Volume II, WIC Program Participants and Nonparticipants . Report No. E-FAN-04-014-2. Washington, DC: U.S. Department of Agriculture, Economic Research Service. Cook JT, Frank DA, Berkowitz C, Black MM, Casey PH, Cutts DB, Meyers AF, Zaldivar N, Skalicky A, Levenson S, Heeren T, Nord M. 2004. Food insecurity is associated with adverse health outcomes among human infants and toddlers. J Nutr 134(6):1432–1438. Cook S, Weitzman M, Auinger P, Nguyen M, Dietz WH. 2003. Prevalence of a metabolic syndrome phenotype in adolescents: Findings from the third National Health and Nutrition Examination Survey, 1988–1994. Arch Pediatr Adolesc Med 157(8):821–827. Devaney B, Ziegler P, Pac S, Karwe V, Barr SI. 2004. Nutrient intakes of infants and toddlers. J Am Diet Assoc 104(1 Suppl):S14–S21. Devaney B, Kim M, Carriquiry A, Camano-Garcia G. 2005. Assessing the Nutrient Intakes of Vulnerable Subgroups. Washington, DC: Economic Research Service, U.S. Department of Agriculture.

OCR for page 39
Food Marketing to Children and Youth: Threat or Opportunity? DHHS (U.S. Department of Health and Human Services). 2000a. Healthy People 2010: Understanding and Improving Health. Washington, DC: DHHS. DHHS. 2000b. Oral Health in America: A Report of the Surgeon General. Rockville, MD: DHHS, National Institute of Dental and Craniofacial Research, National Institutes of Health. DHHS. 2003. National Healthcare Disparities Report. Rockville, MD: DHHS, Agency for Healthcare Research and Quality. DHHS and USDA (U.S. Department of Agriculture). 2004. Nutrition and Your Health: Dietary Guidelines for Americans. 2005 Dietary Guidelines Advisory Committee Report. [Online]. Available: http://www.health.gov/dietaryguidelines/dga2005/report/ [accessed August 10, 2004]. DHHS and USDA. 2005. Dietary Guidelines for Americans 2005. [Online]. Available: http://www.healthierus.gov/dietaryguidelines [accessed January 12, 2005]. Dye BA, Shenkin JD, Ogden CL, Marshall TA, Levy SM, Kanellis MJ. 2004. The relationship between healthful eating practices and dental caries in children ages 2–5 years in the United States, 1988–1994. J Am Dent Assoc 135(1):55–66. Enns CW, Mickle SJ, Goldman JD. 2002. Trends in food and nutrient intakes by children in the United States. Fam Econ Nutr Rev 14(2):56–68. Enns CW, Mickle SJ, Goldman JD. 2003. Trends in food and nutrient intakes by adolescents in the United States. Fam Econ Nutr Rev 15(2):15–27. Ervin RB, Wright JD, Reed-Gillette D. 2004. Prevalence of leading types of dietary supplements used in the Third National Health and Nutrition Examination Survey, 1988–94. Advance Data from Vital and Health Statistics, No. 349. Hyattsville, MD: National Center for Health Statistics. Evans GW. 2004. The environment of child poverty. American Psychologist 59(2):77–92. Federal Interagency Forum on Child and Family Statistics. 2004. America’s Children in Brief: Key National Indicators of Well-Being, 2004. Washington, DC: U.S. Government Printing Office. [Online]. Available: http://childstats.gov [accessed March 8, 2005]. Fisher JO, Mitchell DC, Smiciklas-Wright H, Mannino ML, Birch LL. 2004. Meeting calcium recommendations during middle childhood reflects mother–daughter beverage choices and predicts bone mineral status. Am J Clin Nutr 79(4):698–706. Flegal KM, Troiano RP. 2000. Changes in the distribution of body mass index of adults and children in the US population. Int J Obes 24(7):807–818. Food Research Action Center. 2005. State of the States: 2005. A Profile of Food and Nutrition Programs Across the Nation. [Online]. Available: http://www.frac.org/State_Of_States/2005/Report.pdf [accessed March 9, 2005]. Fox MK, Cole N. 2004. Nutrition and Health Characteristics of Low-Income Populations. Vol III, School-age Children. Report No. E-FAN-04-014-3. Washington, DC: Economic Research Service, U.S. Department of Agriculture. Fox MK, Pac S, Devaney B, Jankowski L. 2004. Feeding Intakes and Toddlers Study: What foods are infants and toddlers eating? J Am Diet Assoc 104(1 Suppl):S22–S30. French SA, Lin BL, Guthrie JF. 2003. National trends in soft drink consumption among children and adolescents age 6 to 17 years: Prevalence, amounts, and sources, 1977/ 1978 to 1994/1998. J Am Diet Assoc 103(10):1326–1331. Frongillo EA. 2003. Understanding obesity and program participation in the context of poverty and food insecurity. J Nutr 133(7):2117–2118. Ganji V, Hampl JS, Betts NM. 2003. Race-, gender- and age-specific differences in dietary micronutrient intakes of US children. Int J Food Sci and Nutr 54(6):485–490. Gartner LM, Greer FR, Section on Breastfeeding and Committee on Nutrition, American Academy of Pediatrics. 2003. Prevention of rickets and vitamin D deficiency: New guidelines for vitamin D intake. Pediatrics 111(4):908–910.

OCR for page 39
Food Marketing to Children and Youth: Threat or Opportunity? Gibson D. 2004. Long-term food stamp program participation is differentially related to overweight in young girls and boys. J Nutr 134(2):372–379. Gift HC, Drury TF, Nowjack-Raymer RE, Selwitz RH. 1996. The state of the nation’s oral health: Mid-decade assessment of Healthy People 2000. J Public Health Dent 56(2): 84–91. Gleason P, Suitor C. 2001. Children’s Diets in the Mid-1990s: Dietary Intake and Its Relationship with School Meal Participation. Report No. CN-01-CD1. Alexandria, VA: U.S. Department of Agriculture. Goodman E. 1999. The role of socioeconomic status gradients in explaining differences in US adolescents’ health. Am J Public Health 89(10):1522–1528. Guthrie JF, Morton JF. 2000. Food sources of added sweeteners in the diets of Americans. J Am Diet Assoc 100(1):43–48, 51. Guthrie JF, Lin B, Frazão E. 2002. Role of food prepared away from home in the American diet, 1977–78 versus 1994–96: Changes and consequences. J Nutr Educ Behav 34(3): 140–150. Haffner SM, Valdez RA, Hazuda HP, Mitchell BD, Morales PA, Stern MP. 1992. Prospective analysis of the insulin-resistance syndrome (syndrome X). Diabetes 41(6):715–722. Haley S, Reed J, Lin B-H, Cook A. 2005. Sweetener Consumption in the United States. Report No. SSS-243-01. Washington, DC: Economic Research Service, U.S. Department of Agriculture. Hedley AA, Ogden CL, Johnson CL, Carroll MD, Curtin LR, Flegal KM. 2004. Prevalence of overweight and obesity among US children, adolescents, and adults, 1999–2002. J Am Med Assoc 291(23):2847–2850. Hetzel BS, Clugston GA. 1999. Iodine. In: Shils ME, Olson JA, Shike M, Ross AC, eds. Modern Nutrition in Health and Disease. 9th ed. Baltimore, MD: Williams and Wilkins. Pp. 253–263. Hofferth S, Curtin S. 2005. Poverty, food programs, and childhood obesity. J Policy Analysis Management 24(4):703–726. Honein MA, Paulozzi LJ, Mathews TJ, Erickson JD, Wong LY. 2001. Impact of folic acid fortification of the US food supply on the occurrence of neural tube defects. J Am Med Assoc 285(23):2981–2986. Huang TT, McCrory MA. 2005. Dairy intake, obesity, and metabolic health in children and adolescents: Knowledge and gaps. Nutr Rev 63(3):71–80. Huang TT, Howarth NC, Lin BH, Roberts SB, McCrory MA. 2004. Energy intake and meal portions: Associations with BMI percentile in U.S. children. Obes Res 12(11):1875–1885. IOM (Institute of Medicine). 1997. Dietary Reference Intakes for Calcium, Phosphorus, Magnesium, Vitamin D, and Fluoride. Washington, DC: National Academy Press. IOM. 1998. Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline. Washington, DC: National Academy Press. IOM. 2001. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc. Washington, DC: National Academy Press. IOM. 2002–2005. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids (Macronutrients). Washington, DC: The National Academies Press. IOM. 2003. Dietary Reference Intakes: Guiding Principles for Nutrition Labeling and Fortification. Washington, DC: The National Academies Press. IOM. 2005a. Dietary Reference Intakes for Water, Potassium, Sodium, Chloride, and Sulfate. Washington, DC: The National Academies Press.

OCR for page 39
Food Marketing to Children and Youth: Threat or Opportunity? IOM. 2005b. Preventing Childhood Obesity: Health in the Balance. Washington, DC: The National Academies Press. IOM. 2005c. The WIC Food Package: Time for a Change. Washington, DC: The National Academies Press. Isomaa B, Almgren P, Tuomi T, Forsen B, Lahti K, Nissen M, Taskinen MR, Groop L. 2001. Cardiovascular morbidity and mortality associated with the metabolic syndrome. Diabetes Care 24(4):683–689. Jahns L, Siega-Riz AM, Popkin BM. 2001. The increasing prevalence of snacking among US children from 1977 to 1996. J Pediatr 138(4):493–498. Jones SJ, Jahns L, Laraia BA, Haughton B. 2003. Lower risk of overweight in school-aged food insecure girls who participate in food assistance. Results from the panel study of income dynamics child development supplement. Arch Pediatr Adolesc Med 157(8): 780–784. Kaiser LL, Melgar-Quinonez HR, Lamp CL, Johns MC, Sutherlin JM, Harwood JO. 2002. Food security and nutritional outcomes of preschool-age Mexican-American children. J Am Diet Assoc 102(7):924–929. Kant AK. 2004. Reported consumption of low-nutrient-density foods by American children and adolescents. National and health correlates, NHANES III, 1988 to 1994. Arch Pediatr Adolesc Med 157(8):789–796. Kant AK, Graubard BI. 2003. Predictors of reported consumption of low-nutrient-density foods in a 24-h recall by 8–16 year old US children and adolescents. Appetite 41(2): 175–180. Kenney GM, McFeeters JR, Yee JY. 2005. Preventive dental care and unmet dental needs among low-income children. Am J Public Health 95(8):1360–1366. Kranz S, Siega-Riz AM, Herring AH. 2004. Changes in diet quality of American preschoolers between 1977 and 1998. Am J Public Health 94(9):1525–1530. Kranz S, Mitchell DC, Siega-Riz AM, Smiciklas-Wright H. 2005a. Dietary fiber intake by American preschoolers is associated with more nutrient-dense diets. J Am Diet Assoc 105(2):221–225. Kranz S, Smiciklas-Wright H, Siega-Riz AM, Mitchell D. 2005b. Adverse effect of high added sugar consumption on dietary intake in American preschoolers. J Pediatr 146(1): 105–111. Lakka HM, Laaksonen DE, Lakka TA, Niskanen LK, Kumpusalo E, Tuomilehto J, Salonen JT. 2002. The metabolic syndrome and total and cardiovascular disease mortality in middle-aged men. J Am Med Assoc 288(21):2709–2716. Land KC. 2005. The Foundation for Child Development Index of Child Well-Being (CWI), 1975–2003, with Projections for 2004. Durham, NC: Duke University. Ledikwe JH, Blanck HM, Khan LK, Serdula MK, Seymour JD, Tohill BC, Rolls BJ. 2005. Dietary energy density determined by eight calculation methods in a nationally representative United States population. J Nutr 135(2):273–278. Lin B. 2005. Nutrition and Health Characteristics of Low-Income Populations: Healthy Eating Index. Agriculture Information Bulletin 796-1. Washington, DC: Economic Research Service, U.S. Department of Agriculture. Lin B, Guthrie J, Frazao E. 1999. Quality of children’s diets at and away from home: 1994–96. Food Review 22(1):2–10. Livingstone MBE, Robson PJ. 2000. Measurement of dietary intake in children. Proc Nutr Soc 59(2):279–293. Looker AC, Dallman PR, Carroll MD, Gunter EW, Johnson CL. 1997. Prevalence of iron deficiency in the United States. J Am Med Assoc 277(12):973–976.

OCR for page 39
Food Marketing to Children and Youth: Threat or Opportunity? Mahoney LT, Burns TL, Stanford W, Thompson BH, Witt JD, Rost CA, Lauer RM. 1996. Coronary risk factors measured in childhood and young adult life are associated with coronary artery calcification in young adults: The Muscatine Study. J Am Coll Cardiol 27(2):277–284. Matheson DM, Varady J, Varady A, Killen JD. 2002. Household food security and nutritional status of Hispanic children in the fifth grade. Am J Clin Nutr 76(1):210–217. McGill HC Jr, McMahan CA, Herderick EE, Zieske AW, Malcom GT, Tracy RE, Strong JP. 2002. Obesity accelerates the progression of coronary atherosclerosis in young men. Circulation 105(23):2712–2718. Moshfegh A, Goldman J, Cleveland L. 2005. What We Eat in America, NHANES 2001–2002: Usual Nutrient Intakes from Food Compared to Dietary Reference Intakes. USDA Agricultural Research Service. [Online]. Available: http://www.ars.usda.gov/SP2UserFiles/Place/12355000/pdf/usualintaketables2001-02.pdf [accessed October 4, 2005]. Mrdjenovic G, Levitsky DA. 2003. Nutritional and energetic consequences of sweetened drink consumption in 6- to 13-year-old children. J Pediatr 142(6):604–610. Murphy M, Douglass J, Latulippe M, Barr S, Johnson R, Frye C. 2005. Beverages as a source of energy and nutrients in diets of children and adolescents. Experimental Biology Meeting, San Diego, April 1–5. Abstract 275.4. FASEB J 19(4):A434. National SAFE KIDS Campaign. 2003, May. Report to the Nation: Trends in Unintentional Childhood Injury Mortality, 1987–2000. [Online]. Available: http://www.usa.safekids.org/content_documents/nskw03_report.pdf [accessed July 22, 2005]. Nicklas TA, Demory-Luce D, Yang SJ, Baranowski T, Zakeri I, Berenson G. 2004a. Children’s food consumption patterns have changed over two decades (1973–1994): The Bogalusa Heart Study. J Am Diet Assoc 104(7):1127–1140. Nicklas TA, Morales M, Linares A, Yang SJ, Baranowski T, De Moor C, Berenson G. 2004b. Children’s meal patterns have changed over a 21-year period: The Bogalusa Heart Study. J Am Diet Assoc 104(5):753–761. Nielsen SJ, Popkin BM. 2003. Patterns and trends in food portion sizes, 1977–1998. J Am Med Assoc 289(4):450–453. Nielsen SJ, Popkin BM. 2004. Changes in beverage intake between 1997 and 2001. Am J Prev Med 27(3):205–210. Nielsen SJ, Siega-Riz AM, Popkin BM. 2002a. Trends in energy intake in U.S. between 1977 and 1996: Similar shifts seen across age groups. Obes Res 10(5):370–378. Nielsen SJ, Siega-Riz AM, Popkin BM. 2002b. Trends in food locations and sources among adolescents and young adults. Prev Med 35(2):107–113. NIH (National Institutes of Health). 2001. Osteoporosis: Prevention, diagnosis, and therapy. J Am Med Assoc 285(6):785–795. Nord M, Andrews M, Carlson S. 2005. Household Food Security in the United States, 2004. Economic Research Report Number 11. Washington, DC: U.S. Department of Agriculture, Economic Research Service. NRC (National Research Council). 1989. Recommended Dietary Allowances. 10th ed. Washington, DC: National Academy Press. NRC and IOM. 2004. Children’s Health, the Nation’s Wealth. Washington, DC: The National Academies Press. Ogden CL, Carroll MD, Flegal KM. 2003. Epidemiologic trends in overweight and obesity. Endocrinol Metab Clin North Am 32(4):741–760, vii. Ogden CL, Fryar CD, Carroll MD, Flegal KM. 2004. Mean body weight, height and body mass index, United States, 1960–2002. Advance Data from Vital and Health Statistics, No. 347. Hyattsville, MD: National Center for Health Statistics. [Online]. Available: http://www.cdc.gov/nchs/data/ad/ad347.pdf [accessed March 20, 2005].

OCR for page 39
Food Marketing to Children and Youth: Threat or Opportunity? Park YK, Sempos CT, Barton CN, Vanderveen JE, Yetley EA. 2000. Effectiveness of food fortification in the United States: The case of pellagra. Am J Public Health 90(5): 727–738. Park YK, Meier ER, Bianchi P, Song WO. 2002. Trends in children’s consumption of beverages: 1987 to 1998. Fam Econ Nutr Rev 14(2):69–79. Pfeiffer CM, Caudill SP, Gunter EW, Osterloh J, Sampson EJ. 2005. Biochemical indicators of B vitamin status in the US population after folic acid fortification: Results from the National Health and Nutrition Examination Survey 1999–2000. Am J Clin Nutr 82(2): 442–450. Pollitt E. 1993. Iron deficiency and cognitive function. Annu Rev Nutr 13:521–537. Rajeshwari R, Yang SJ, Nicklas TA, Berenson GS. 2005. Secular trends in children’s sweetened-beverage consumption (1973 to 1994): The Bogalusa Heart Study. J Am Diet Assoc 105(2):208–214. Rolls BJ, Ello-Martin JA, Tohill BC. 2004. What can intervention studies tell us about the relationship between fruit and vegetable consumption and weight management? Nutr Rev 62(1):1–17. Sherry B, Mei Z, Yip R. 2001. Continuation of the decline in prevalence of anemia in low-income infants and children in five states. Pediatrics 107(4):677–682. Sherry B, Mei Z, Scanlon KS, Mokdad AH, Grummer-Strawn LM. 2004. Trends in state-specific prevalence of overweight and underweight in 2- through 4-year-old children from low-income families from 1989 through 2000. Arch Pediatr Adolesc Med 158(12): 1116–1124. Shils M, Shike M, Olson J, Ross AC. 1999. Modern Nutrition in Health and Disease. Baltimore, MD: Williams & Wilkins. Siega-Riz AM, Popkin BM, Carson T. 1998. Trends in breakfast consumption for children in the United States from 1965 to 1991. Am J Clin Nutr 67(4S):748S–756S. Skinner JD, Ziegler P, Pac S, Devaney B. 2004a. Meal and snack patterns of infants and toddlers. J Am Diet Assoc 104(1 Suppl 1):S65–S70. Skinner JD, Ziegler P, Ponza M. 2004b. Transitions in infants’ and toddlers’ beverage patterns. J Am Diet Assoc 104(1 Suppl 1):S45–S50. Smiciklas-Wright H, Mitchell DC, Mickle SJ, Goldman JD, Cook A. 2003. Foods commonly eaten in the United States, 1989–1991 and 1994–1996: Are portion sizes changing? J Am Diet Assoc 103(1)41–47. Storey ML, Forshee RA, Anderson PA. 2004. Associations of adequate intake of calcium with diet, beverage consumption, and demographic characteristics among children and adolescents. J Am Coll Nutr 23(1):18–33. Story M, Holt K, Sofka D, eds. 2003. Bright Futures in Practice: Nutrition. 2nd ed. Arlington, VA: National Center for Education in Maternal and Child Health. [Online]. Available: http://www.brightfutures.org/nutrition/index.html [accessed August 22, 2005]. Strauss RS, Knight J. 1999. Influence of the home environment on the development of obesity in children. Pediatrics 103(6):E85. Strauss RS, Pollack HA. 2001. Epidemic increase in childhood overweight, 1986–1998. J Am Med Assoc 286(22):2845–2848. Subar AF, Krebs-Smith SM, Cook A, Kahle LL. 1998. Dietary sources of nutrients among US children, 1989–1991. Pediatrics 102(4 Pt 1):913–923. Suitor CW, Gleason PM. 2002. Using Dietary Reference Intake-based methods to estimate the prevalence of inadequate nutrient intake among school-aged children. J Am Diet Assoc 102(4):530–536. Templeton S. 2005. Sugar intake from combined school lunch and competitive food consumption. J Am Diet Assoc 105(7):1066–1067.

OCR for page 39
Food Marketing to Children and Youth: Threat or Opportunity? Templeton SB, Marlette MA, Panemangalore M. 2005. Competitive foods increase the intake of energy and decrease the intake of certain nutrients by adolescents consuming school lunch. J Am Diet Assoc 105(2):215–220. Troiano RP, Flegal KM. 1998. Overweight children and adolescents: Description, epidemiology, and demographics. Pediatrics 101(3 Pt 2):497–504. Troiano RP, Briefel RR, Carroll MD, Bialostosky K. 2000. Energy and fat intakes of children and adolescents in the United States: Data from the National Health and Nutrition Examination Surveys. Am J Clin Nutr 72(5 Suppl):1343S–1353S. USDA (U.S. Department of Agriculture). 1992. The Food Guide Pyramid. A Guide to Daily Food Choice. Home and Garden Bulletin 252. Washington, DC: USDA Human Nutrition Information Service. USDA. 1996. The Food Guide Pyramid. Center for Nutrition Policy and Promotion. Washington, DC: U.S. Government Printing Office. USDA. 1999. Food and Nutrient Intakes by Children, 1994–96, 1998, Table Set 17. Food Surveys Research Group, Agricultural Research Service. [Online]. Available: http://www.barc.usda.gov/bhnrc/foodsurvey/home.htm [accessed January 4, 2005]. USDA. 2003a. Federal Register Notice on Technical Revisions to the Food Guide Pyramid. Table 2: Energy Levels for Proposed Food Intake Patterns. Center for Nutrition Policy and Promotion. [Online]. Available: http://www.cnpp.usda.gov/pyramid-update/FGP%20docs/TABLE%202.pdf [accessed March 28, 2005]. USDA. 2003b. The Food Guide Pyramid for Young Children. Center for Nutrition Policy and Promotion. [Online]. Available: http://www.usda.gov/cnpp/KidsPyra/LittlePyr.pdf [accessed February 24, 2005]. USDA. 2005a. Interactive Healthy Eating Index. [Online]. Available: http://209.48.219.53/Default.asp [accessed July 6, 2005]. USDA. 2005b. MyPyramid: Steps to a Healthier You. [Online]. Available: http://www.mypyramid.gov/ [accessed April 25, 2005]. USDA. 2005c. The Food Assistance Landscape. Food Assistance and Nutrition Research Report No. 28-6. [Online]. Available: http://www.ers.usda.gov/publications/fanrr28-6/fanrr28-6.pdf [accessed April 24, 2005]. USDA. 2005d. USDA Healthy Eating Index. [Online]. Available: http://www.cnpp.usda.gov/healthyeating.html [accessed July 6, 2005]. Wang G, Dietz WH. 2002. Economic burden of obesity in youths aged 6 to 17 years: 1979–1999. Pediatrics 109(5):e81. Weinberg, LG, Berner LA, Groves JE. 2004. Nutrient contributions of dairy foods in the United States, continuing survey of food intakes by individuals, 1994–1996, 1998. J Am Diet Assoc 104(6):895–902. Weisberg P, Scanlon KS, Li R, Cogswell ME. 2004. Nutritional rickets among children in the United States: Review of cases reported between 1986 and 2003. Am J Clin Nutr 80(6 Suppl):1697S–1705S. Williams J, Wake M, Hesketh K, Maher E, Waters E. 2005. Health-related quality of life of overweight and obese children. J Am Med Assoc 293(1):70–76. Winkleby MA, Robinson TN, Sundquist J, Kraemer HC. 1999. Ethnic variation in cardiovascular disease risk factors among children and young adults: Findings from the Third National Health and Nutrition Examination Survey, 1988–1994. J Am Med Assoc 281(11):1006–1013. Wise PH. 2004. The transformation of child health in the United States. Health Affairs 23(5):9–25. Wyshak G. 2000. Teenaged girls, carbonated beverage consumption, and bone fractures. Arch Pediatr Adolesc Med 154(6):610–613.