The committee’s conclusions regarding the potential for adverse effects from fluoride at 2 to 4 mg/L in drinking water do not address the lower exposures commonly experienced by most U.S. citizens. Fluoridation is widely practiced in the United States to protect against the development of dental caries; fluoride is added to public water supplies at 0.7 to 1.2 mg/L. The charge to the committee did not include an examination of the benefits and risks that might occur at these lower concentrations of fluoride in drinking water.


As noted above, gaps in the information on fluoride prevented the committee from making some judgments about the safety or the risks of fluoride at concentrations of 2 to 4 mg/L. The following research will be useful for filling those gaps and guiding revisions to the MCLG and SMCL for fluoride.

  • Exposure assessment

    • Improved assessment of exposure to fluoride from all sources is needed for a variety of populations (e.g., different socioeconomic conditions). To the extent possible, exposures should be characterized for individuals rather than communities, and epidemiologic studies should group individuals by exposure level rather than by source of exposure, location of residence, or fluoride concentration in drinking water. Intakes or exposures should be characterized with and without normalization for body weight. Fluoride should be included in nationwide biomonitoring surveys and nutritional studies; in particular, analysis of fluoride in blood and urine samples taken in these surveys would be valuable.

  • Pharmacokinetic studies

    • The concentrations of fluoride in human bone as a function of exposure concentration, exposure duration, age, sex, and health status should be studied. Such studies would be greatly aided by noninvasive means of measuring bone fluoride. Information is particularly needed on fluoride plasma and bone concentrations in people with small-to-moderate changes in renal function as well as in those with serious renal deficiency.

    • Improved and readily available pharmacokinetic models should be developed. Additional cross-species pharmacokinetic comparisons would help to validate such models.

  • Studies of enamel fluorosis

    • Additional studies, including longitudinal studies, should be done in U.S. communities with water fluoride concentrations greater than 1 mg/L.

The National Academies of Sciences, Engineering, and Medicine
500 Fifth St. N.W. | Washington, D.C. 20001

Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement