TABLE 3-1 Commonly Used Units for Measuring Fluoride





1 ppm

1 mg/L


1 µmol/L

0.019 mg/L

Bone ash

1 ppm

1 mg/kg

et al. 1995), so 1,000 milligrams per kilogram (mg/kg) of fluoride in bone ash is equivalent to about 560 mg/kg wet weight.

Fluoride concentrations in body fluids typically are measured with a fluoride-specific electrode, an instrument that cannot reliably measure concentrations below about 0.019 mg/L and tends to overpredict at lower concentrations. As many people living in areas with artificially fluoridated water have plasma concentrations in this range, studies that rely on fluoride electrodes alone might tend to overpredict concentrations in plasma and body fluids. The hexamethyldisiloxane diffusion method provides a way around this problem by concentrating the fluoride in samples before analysis (reviewed by Whitford 1996).


A comprehensive review of fluoride pharmacokinetics is provided by Whitford (1996), and this section presents a brief overview of that information. The pharmacokinetics of fluoride are primarily governed by pH and storage in bone. HF diffuses across cell membranes far more easily than fluoride ion. Because HF is a weak acid with a pKa of 3.4, more of the fluoride is in the form of HF when pH is lower. Consequently, pH—and factors that affect it—play an important role in the absorption, distribution, and excretion of fluoride. Fluoride is readily incorporated into calcified tissues, such as bone and teeth, substituting for hydroxyls in hydroxyapatite crystals. Fluoride exchanges between body fluids and bone, both at the surface layer of bone (a short-term process) and in areas undergoing bone remodeling (a longer-term process). Most of the fluoride in the body, about 99%, is contained in bone.

Fluoride is well absorbed in the alimentary tract, typically 70% to 90%. For sodium fluoride and other very soluble forms, nearly 100% is absorbed. Fluoride absorption is reduced by increased stomach pH and increased concentrations of calcium, magnesium, and aluminum. At high concentrations, those metals form relatively insoluble fluoride salts. A recent study comparing hard and soft water found little difference in fluoride bioavailability in healthy young volunteers (Maguire et al. 2004). Fluoride

The National Academies of Sciences, Engineering, and Medicine
500 Fifth St. N.W. | Washington, D.C. 20001

Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement