ment and in human tissues, to monitor changes in exposure, and to investigate the distribution of exposure among the general population. Biomonitoring provides a measurement of exposure that—when used with available epidemiologic, toxicologic, and pharmacokinetic modeling data—can be used to estimate how much of a chemical has been absorbed into the body and to provide an indicator of potential health risk. State and local officials can use biomonitoring data to help assess environmental risks to specific sites or populations. In occupational and clinical medicine, biomonitoring can be used as a surveillance tool to help interpret a clinical problem or to monitor an exposure trend. Biomonitoring, in short, is a versatile means of assessing exposure.

Many population-based biomonitoring efforts are taking place in the United States and in Europe. In the United States, CDC publishes periodic national reports on human exposure to environmental chemicals that detail the concentrations of chemicals and their breakdown products in blood and urine of a representative sample of the U.S. population. Other government organizations, including EPA and the National Institutes of Health (NIH), are conducting and sponsoring biomonitoring studies.

In spite of the potential value of biomonitoring, tremendous challenges surround its use. They include improving our ability to design biomonitoring studies, interpreting what biomonitoring data mean for public health, addressing ethical uses of the data, and communicating results to study participants, policy-makers, and the public.

The ability to generate new biomonitoring data often exceeds the ability to evaluate whether and how a chemical measured in an individual or population may cause a health risk or to evaluate its sources and pathways for exposure. As CDC states in its National Reports on Human Exposure to Environmental Chemicals, the presence of a chemical in a blood or urine specimen does not mean that the chemical causes a health risk or disease. The challenge for public-health officials is to understand the health implications of the biomonitoring data, to provide the public with appropriate information, and to craft appropriate public-health policy responses.

To address some of those challenges raised by biomonitoring data, Congress2 directed EPA to ask the National Research Council (NRC) of the National Academies to perform an independent study.


In response to the request, the NRC established the Committee on Human Biomonitoring for Environmental Toxicants, which prepared this


In the conference report to accompany H.R. 2861, the Department of Veterans Affairs and Housing and Urban Development, and Independent Agencies Appropriations Act, 2004.

The National Academies of Sciences, Engineering, and Medicine
500 Fifth St. N.W. | Washington, D.C. 20001

Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement