79. S.A. Benner, K.G. Devine, L.N. Matveeva, and D.H. Powell, “The Missing Organic Molecules on Mars,” Proceedings of the National Academy of Sciences 97: 2425-2430, 2000.

80. G.W. Wetherhill, “Accumulation of Mercury from Planetismals,” pp. 671-691 in Mercury (F. Vilas, C.R. Chapman, and M.S. Matthews, eds.), University of Arizona Press, Tucson, Ariz., 1988.

81. For general background on Neptune and related projects see, for example, Ocean Studies Board, National Research Council, Illuminating the Hidden Planet: The Future of Seafloor Observatory Science, National Academy Press, Washington, D.C., 2000.

82. See, for example, S.P. Kounaves, S.R. Lukow, B.P. Comeau, M.H. Hecht, S.M. Grannan-Feldman, K. Manatt, S.J. West, X. Wen, M. Frant, and T. Gillette, “Mars Surveyor Program ’01 Mars Environmental Compatibility Assessment Wet Chemistry Lab: A Sensor Array for Chemical Analysis of the Martian Soil,” Journal of Geophysical Research 108(E7): 5077, 2003; and M. Koel, M. Kaljurand, and C.H. Lochmuller, “Evolved Gas Analysis of Inorganic Materials Using Thermochromatography: Model Inorganic Salts and Palagonite Martian Soil Simulants,” Analytical Chemistry 69: 4586-4591, 1997.

83. See, for example, T.L. Roush and J.B. Orenberg, “Estimated Detectability of Iron-Substituted Montmorillonite Clay on Mars from Thermal Emission Spectra of Clay-Palagonite Physical Mixtures,” Journal of Geophysical Research 101(E7): 26111-26118, 1996; and M. Koel, M. Kaljurand, and C.H. Lochmuller, “Evolved Gas Analysis of Inorganic Materials Using Thermochromatography: Model Inorganic Salts and Palagonite Martian Soil Simulants,” Analytical Chemistry 69: 4586-4591, 1997.



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement