62. M.H. Engel and S.A. Macko, “Isotopic Evidence for Extraterrestrial Non-racemic Amino Acids in the Murchison Meteorite,” Nature 389: 265-268, 1997.

63. J.R. Cronin and S. Pizzarello, “Enantiomeric Excesses in Meteoritic Amino Acids,” Science 275: 951-955, 1997.

64. S. Pizzarello and J.R. Cronin, “Alanine Enantiomers in the Murchison Meteorite,” Nature 394: 236, 1998.

65. S. Pizzarello and J.R. Cronin, “Non-racemic Amino Acids in the Murray and Murchison Meteorites,” Geochimica et Cosmochimica Acta 64: 329-338, 2000.

66. O. Vandenabeele-Trambouze, M. Dobrijevic, D. Despois, A. Commeyras, M. Geffard, C. Bayle, M. Albert, and M.F. Grenier-Loustalot, “Amino-acids Enantiomeric Ratio Determination in Micrometeorites: Analytical Development and Interest for Mars Samples,” Frontiers of Life—XIIth Rencontres de Blois (L.M. Celnikier and J. Tran Thanh Van, eds.), Proceedings of the XIIth Rencontres de Blois: Frontiers of Life Conference, June 25-1 July 1, 2000, Chateau de Blois, France, The Gioi Publishers, Hanoi, Vietnam, 2003.

67. W. Thiemann and U. Meierhenrich, “ESA Mission ROSETTA Will Probe for Chirality of Cometary Amino Acids,” Origins of Life and Evolution of the Biosphere 31: 199-210, 2001.

68. J.R. Cronin and S. Pizzarello, “Enantiomeric Excesses in Meteoritic Amino Acids,” Science 275: 951-955, 1997.

69. J. Bailey, A. Chrysostomou, J.H. Hough, T.M. Gledhill, A. McCall, S. Clark, F. Ménard, and M. Tamura, “Circular Polarization in Star-formation Regions: Implications for Biomolecular Homochirality,” Science 281: 672-674, 1998.

70. E. Rubenstein, W.A. Bonner, H.P. Noyes, and G.S. Brown, “Supernovae and Life,” Nature 300: 118, 1983.

71. P. Ehrenfreund, M.P. Bernstein, J.P. Dworkin, S.A. Sandford, and L.J. Allamandola, “The Photostability of Amino Acids in Space,” Astrophysical Journal Letters 550: 95-99, 2001.

72. C.M.O’D. Alexander, S.S. Russell, J.W. Arden, R.D. Ash, M.M. Grady, and C.T. Pillnger, “The Origin of Chondritic Macromolecular Organic Matter: A Carbon and Nitrogen Isotope Study,” Meteoritics and Planetary Science 33: 603-622, 1998.

73. I.R. Kaplan, E.T. Degens, and J.H. Reuter, “Organic Compounds in Stony Meteorites,” Geochimica et Cosmochimica Acta 27: 805-834, 1963.

74. For a review see, for example, J.M. Hayes, “Organic Constituents of Meteorites—A Review,” Geochimica et Cosmchimica Acta 31: 1395-1440, 1967.

75. M.A. Sephton, C.T. Pillinge, and I. Gilmour, “Normal Alkanes in Meteorites: Molecular 13C Values Indicate an Origin by Terrestrial Contamination,” Precambrian Research 106: 45-56, 2001.

76. S.J. Clemett, C.R. Maechling, R.N. Zare, and C.M.O’D Alexander, “Analysis of Polycyclic Aromatic Hydrocarbons in Seventeen Ordinary and Carbonaceous Chondrites,” Lunar and Planetary Science 23: 233-234, 1992.

77. L.J. Kovalenko, C.R. Maechling, S.J. Clemett, J.-M. Philipposz, R.N. Zare, and C.M.O’D. Alexander, “Microscopic Organic Analysis Using Two-step Laser Mass Spectrometry: Application to Meteoritic Acid Residues,” Analytical Chemistry 64: 682-690, 1992.

78. M.A. Sephton, C.T. Pillinger, and I. Gilmour, “Evidence from the Isotopic Compositions of Individual Molecules for the Indigeneity of PAH in Meteorites,” Lunar and Planetary Science Conference XXVIII, Abstract 1732, 1999.

79. See, for example, H.Y. McSween, Jr., and A.H. Treiman, “Martian Meteorites,” Chapter 6 of Planetary Materials: Reviews in Mineralogy, Volume 36 (J.J. Papike ed.), Mineralogical Society of America, Chantilly, Va., 1998.

80. See, for example, the Meteorite Catalogue Database maintained by the U.K.’s Natural History Museum, available online at http://internt.nhm.ac.uk/jdsml/research-curation/projects/metcat/, last accessed January 19, 2007; or the Mars Meteorite Compendium maintained at NASA’s Johnson Space Center, available online at http://www-curator.jsc.nasa.gov/curator/antmet/mmc/index.cfm, last accessed January 19, 2007.

81. I.P. Wright, R.H. Carr, and C.T. Pillinger, “Carbon Abundances and Isotopic Studies of Shergotty and Other Shergottite Meteorites,” Geochimica et Cosmochimica Acta 50: 983-991, 1986.

82. I.P. Wright, M.M. Grady, and C.T. Pillinger, “Organic Materials in a Martian Meteorite,” Nature 340: 220-222, 1989.

83. M.A. Sephton, I.P. Wright, I. Gilmour, J.W. de Leeuw, M.M. Grady, and C.T. Pillinger, “High Molecular Weight Organic Matter in Martian Meteorites,” Planetary and Space Science 50: 711-716, 2002.

84. D.S. McKay, E.K. Gibson, Jr., K.L. Thomas-Keprta, H. Vali, C.S. Romanek, S.J. Clemett, X.D.F. Chillier, C.R. Maechling, and R.N. Zare, “Search for Past Life on Mars: Possible Relic Biogenic Activity in Martian Meteorite ALH 84001,” Science 273: 924-930, 1996.

85. L. Becker, B. Popp, T. Rust, and J.L. Bada, “The Origin of Organic Matter in the Martian Meteorite ALH 84001,” Earth and Planetary Science Letters 167: 71-79, 1999.

86. A.J.T. Jull, C. Courtney, D.A. Jeffrey, and J.W. Beck, “Isotopic Evidence for a Terrestrial Source of Organic Compounds Found in Martian Meteorites: Allan Hill 84001 and Elephant Moraine 79001,” Science 279: 366, 1999.

87. For more information about MEPAG see http://mepag.jpl.nasa.gov/. Last accessed January 19, 2007.

88. M. Yoshida, H. Ando, K. Omoto, R. Naruse, and Y. Ageta, “Discovery of Meteorites Near Yamato Mountains, East Antarctica,” Antarctic Record 39: 62-65, 1971.

89. For a summary of Antarctic meteorite field work, overviews of meteoritic and related glaciological investigations, and discussions of concentration mechanisms see, for example, W.A. Cassidy, R.P. Harvey, J. Schutt, G. Delisle, and K. Yanai, “The Meteorite Collection Sites of Antarctica,” Meteoritics 27: 490-525, 1992.

90. See, for example, A. Bischoff, “Fantastic New Chondrites, Achondrites, and Lunar Meteorites as the Result of Recent Meteorite Search Expeditions in Hot and Cold Deserts,” Earth, Moon, and Planets 85-86: 87-95, 2001.

91. B.A. Hofmann, E. Gnos, A. Al-Kathiri, H. Al-Azri, and A. Al-Murazza, “Omani-Swiss Meteorite Search 2001-2003 Project Overview,” Meteoritics and Planetary Science 38: Abstract 5093.

The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement