early: detailed Apollo planning started in the early 1960s, well before Apollo 11 landed on the Moon in 1969, and included robotic precursors, determination of science objectives, astronaut selection, selection of landing sites, astronaut science training, science team selection, traverse planning, sampling strategies, geophysical station development (the Apollo Lunar Surface Experiments Package [ALSEPs]), full-up mission simulations, and data-analysis preparations. A similar range of preparation is essential for implementation of the Vision for Space Exploration. The merit of including scientists in the astronaut corps has long been recognized and the benefits demonstrated on Apollo 17, Skylab, the Space Shuttle, Spacelab, and the International Space Station. Scientist-astronauts should be among all lunar mission crews.

Much of what was learned by hard experience on Apollo can now be efficiently incorporated into VSE planning. Obviously much of the detailed planning will have to, and should, await a date closer to mission implementation; however, many aspects can be initiated now with relatively low investment and high return. Two areas stand out as needing early planning and the involvement of the science community: (1) site selection and the related issue of sortie missions and/or a lunar outpost, and (2) surface mission planning and related requirements for mobility and the use of robotics.


1. Landing site selection. NASA’s plans to return humans to the Moon necessarily involve the selection of surface exploration sites. The site selection process becomes a matter of which sites best satisfy Exploration Systems Mission Directorate (ESMD) goals and priorities. Among the considerations are science, the buildup of an outpost or base, preparation for Mars exploration, the development of in situ resource utilization (ISRU), and commercial potential. Then will come the obvious overlay of budget and engineering limitations, site access, logistics, and safety. Successful accomplishment of many of the science goals elucidated in this report depends critically on getting to specific lunar landing sites. In contrast to site selection for the Apollo program, VSE site selection has to satisfy multiple goals of which science is but one, albeit an important one. The challenge becomes one of optimizing site selection to accomplish multiple goals. The committee notes that there are site selection considerations that are independent of human exploration sites: for example, robotic sample return from sites that may not be visited by humans and/or the global emplacement of geophysical networks. These science activities recognize that the VSE is advertised as not solely for human missions but that it is to involve an ongoing mix of human and robotic missions.

A dichotomy already exists regarding lunar landing sites. On the one hand, the sortie mode is preferred by most lunar scientists, who consider it necessary to visit many diverse lunar sites both for geologic studies and for instrument emplacement. The ESMD, on the other hand, has made a preliminary determination that a singular (tentatively polar region) outpost site best serves its higher-priority goals of “habitation” and “prepare for exploration.” Although a sortie capability is currently stated as continuing to be available, the cost of such a capability would be billed to the Science Mission Directorate (at about $2 billion). That cost must be traded off against accomplishing the science goals robotically and against competing nonlunar space science.

The attributes of the lunar outpost concept for purposes of scientific investigation deserve joint ESMD/SMD study. The potential advantages are increased time for detailed geologic study; deep drilling, core retrieval, and downhole instrument emplacement; geophysical instrument emplacements; traverse surveys; returned-sample selection (“high-grading”); follow-up on results obtained on earlier outpost missions; and utilization of logistics previously emplaced. An outpost would warrant a greater investment in terms of reusable resources—for example, a multimission rover with resuppliable onboard life support and sophisticated analytical instrumentation. Such a rover could be used in automated mode between outpost visits. Many of these attributes were being considered in the 1960s as follow-ons to the initial Apollo missions but were, obviously, never executed when missions after Apollo 17 were canceled. It is important to note that the precise location of an outpost site will determine the scientific return. It thus behooves the ESMD to incorporate scientific site criteria among its overall criteria.

2. Surface and orbital mission operational planning. Apollo experience demonstrated that the most valuable resource on the Moon is time. There is inevitably more to be done than time allows. For example, astronauts were constantly under pressure to “move on to the next station.” Many opportunities to examine discoveries in more detail were missed. Things that went wrong (e.g., a stuck drill or an instrument failing to operate) took time away from meeting the time lines. It is necessary to devise methods to conserve astronaut time, doing robotically



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement