Curation of lunar samples has always aimed to avoid cross-contamination of samples. A major manifestation of this requirement is that samples from more than one location on the Moon have been handled in separate work areas (typically nitrogen-filled stainless steel cabinets) or in work areas that are thoroughly cleaned before samples from another area are introduced. The challenge of working with samples from a much wider variety of areas will be significant, and the procedures and facilities for doing that should be re-evaluated. For example, working with a large number of small samples from a diversity of areas might require smaller, more flexible, work areas.

Many of the large samples collected by Apollo proved to be needlessly redundant scientifically. When most analyses can be done on milligram to gram quantities of samples, 10 kg rock samples are likely to be too large. This may not be true of rock samples for which important internal relationships (e.g., contacts between matrix and clasts in complex breccias) require study. Large regolith samples (perhaps greater than 200 g) can prove to be cumbersome to handle and preserve, when only a few grams of material are designated for study. These types of considerations should be included in designing crew surface procedures, sampling tools, and containers.

The ability to return to a field area or to a central outpost will open some opportunities not available to the Apollo program. In particular, capability can be provided for storing larger pieces of rock on the Moon in a protected environment, in case there is a future call for study of those samples when something unusual is discovered during scientific investigations. As mentioned elsewhere, analytical capability on the Moon could be used to select portions of samples, such as fragments from a sieved regolith sample. In these cases, the residual materials, which may have future scientific value, should be isolated and preserved in some manner. The characteristics of a lunar curatorial facility and associated hardware and procedures should receive study.

Finding 4R: The NASA curatorial facilities and staff have provided an exemplary capability since the Apollo program to take advantage of the scientific information inherent in extraterrestrial samples. The VSE has the potential to add significant demands on the curatorial facilities. The existing facilities and techniques are not sufficient to accommodate that demand and the new requirements that will ensue. Similarly, there is a need for new approaches to the acquisition of samples on lunar missions.

Recommendation 4R: NASA should conduct a thorough review of all aspects of sample curation, taking into account the differences between a lunar outpost-based program and the sortie approach taken by the Apollo missions. This review should start with a consideration of documentation, collection, and preservation procedures on the Moon and continue to a consideration of the facilities requirements for maintaining and analyzing the samples on Earth. NASA should enlist a broad group of scientists familiar with curatorial capabilities and the needs of lunar science, such as the Curation and Analysis Planning Team for Extraterrestrial Materials (CAPTEM), to assist it with the review.

The National Academies of Sciences, Engineering, and Medicine
500 Fifth St. N.W. | Washington, D.C. 20001

Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement