FIGURE 2.5 Estimates of the cost of conserved energy (CCE) and energy savings potential for electricity efficiency technologies in buildings in 2030. The CCEs for potential energy efficiency measures (numbered) are shown versus the ranges of potential energy savings for these measures. The total savings potential is 567 TWh per year in the residential sector and 705 TWh per year in the commercial sector. Commercial buildings (red solid line) and residential buildings (blue solid line) are shown separately. For comparison, the national average 2007 retail price of electricity in the United States is shown for the commercial sector (red dashed line) and the residential sector (blue dashed line). For many of the technologies considered, on average the investments have positive payback without additional incentives. CCEs include the costs for add-ons such as insulation. For replacement measures, the CCE accounts for the incremental costfor example, between purchasing a new but standard boiler and purchasing a new high-efficiency one. CCEs do not reflect the cost of programs to drive efficiency. All costs are shown in 2007 dollars. Sources: Data from Brown et al. (2008) and Chapter 4 in Part 2 of this report.

FIGURE 2.5 Estimates of the cost of conserved energy (CCE) and energy savings potential for electricity efficiency technologies in buildings in 2030. The CCEs for potential energy efficiency measures (numbered) are shown versus the ranges of potential energy savings for these measures. The total savings potential is 567 TWh per year in the residential sector and 705 TWh per year in the commercial sector. Commercial buildings (red solid line) and residential buildings (blue solid line) are shown separately. For comparison, the national average 2007 retail price of electricity in the United States is shown for the commercial sector (red dashed line) and the residential sector (blue dashed line). For many of the technologies considered, on average the investments have positive payback without additional incentives. CCEs include the costs for add-ons such as insulation. For replacement measures, the CCE accounts for the incremental cost—for example, between purchasing a new but standard boiler and purchasing a new high-efficiency one. CCEs do not reflect the cost of programs to drive efficiency. All costs are shown in 2007 dollars. Sources: Data from Brown et al. (2008) and Chapter 4 in Part 2 of this report.

CCE for electricity savings from commercial and residential buildings is shown in Figure 2.5. The range of CCE for electricity savings from commercial buildings is 0.5–8.4μ/kWh, with a weighted average of 2.7¢/kWh. However, nearly all of the efficiency savings are achievable at a CCE of 5¢/kWh or less. The range of CCE for electricity savings from residential buildings is 0.9–7.4¢/kWh, with a weighted average of 2.7¢/kWh. More than 80 percent of the potential savings are achievable at a CCE of 5¢/kWh or less. For comparison purposes, the average retail price of electricity in the residential and commercial sectors in 2007 was about



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement