7
Diversity and Equity

An important value of informal environments for learning science is being accessible to all. Socioeconomic, cultural, ethnic, historical, and systemic factors, however, all influence the types of access and opportunities these environments afford to learners (Heath, 2007). “Being born into a racial majority group with high levels of economic and social resources—or into a group that has historically been marginalized with low levels of economic and social resources—results in very different lived experiences that include unequal learning opportunities, challenges, and potential risks for learning and development” (Banks, 2007, p. 15).

The challenges in engaging nondominant groups in the sciences are reflected in studies showing

  1. inadequate science instruction exists in most elementary schools, especially those serving children from low-income and rural areas;

  2. girls often do not identify strongly with science or science careers;

  3. students from nondominant groups perform lower on standardized measures of science achievement than their peers;

  4. although the number of individuals with disabilities pursuing post-secondary education has increased, few pursue academic careers in science or engineering; and

  5. learning science can be especially challenging for all learners because of the specialized language involved (Banks, 2007; Allen and Seumptewa, 1993; Cajete, 1993; MacIvor, 1995; Malcom and Matyas, 1991; Snively, 1995).



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement



Below are the first 10 and last 10 pages of uncorrected machine-read text (when available) of this chapter, followed by the top 30 algorithmically extracted key phrases from the chapter as a whole.
Intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text on the opening pages of each chapter. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

Do not use for reproduction, copying, pasting, or reading; exclusively for search engines.

OCR for page 209
0 7 Diversity and Equity An important value of informal environments for learning science is be- ing accessible to all. Socioeconomic, cultural, ethnic, historical, and systemic factors, however, all influence the types of access and opportunities these environments afford to learners (Heath, 2007). “Being born into a racial majority group with high levels of economic and social resources—or into a group that has historically been marginalized with low levels of economic and social resources—results in very different lived experiences that include unequal learning opportunities, challenges, and potential risks for learning and development” (Banks, 2007, p. 15). The challenges in engaging nondominant groups in the sciences are reflected in studies showing 1. inadequate science instruction exists in most elementary schools, especially those serving children from low-income and rural areas; 2. girls often do not identify strongly with science or science careers; 3. students from nondominant groups perform lower on standardized measures of science achievement than their peers; 4. although the number of individuals with disabilities pursuing post- secondary education has increased, few pursue academic careers in science or engineering; and 5. learning science can be especially challenging for all learners be- cause of the specialized language involved (Banks, 2007; Allen and Seumptewa, 1993; Cajete, 1993; MacIvor, 1995; Malcom and Matyas, 1991; Snively, 1995).

OCR for page 209
0 Learning Science in Informal Environments These findings suggest the barriers that exist to engaging those from nondominant groups in science. It is critical to consider diversity issues and the science learning of nondominant groups for several reasons: to ensure equitable treatment of all individuals; to continue to develop a well-trained workforce; to develop a well-informed, scientifically literate citizenry; and to increase diversity in the pool of scientists and science educators who can bring new perspectives to science and the understanding of science. Scientific discourse, teaching, and learning are not culturally neutral, although people tend to see and represent them as acultural or neutral or, in the case of science, as representing a unique culture unto itself. An important perspective on science learning in informal environments emphasizes that, although treating the construct of culture as a homogeneous categorical vari- able is problematic, people nonetheless do “live culturally” (Nasir, Rosebery, Warren, and Lee, 2006; Gutiérrez and Rogoff, 2003). From this perspective, a key object of study is the wide, varied repertoire of sense-making practices that people participate in, especially in everyday contexts. Gutiérrez and Rogoff (2003) point out that “individual development and disposition must be understood in (not separate from) cultural and historical context” (p. 22). All people engage in sophisticated learning shaped by the cultural and contextual conditions in which they live. In this sense, all people learn, but a given group may learn different knowledge and practices and may organize its learning differently. This chapter addresses diversity issues related to learning science in informal environments. Among the many dimensions of diversity, here we take a cultural-historical perspective on learning and illustrate the implications for science learning and the structuring of informal environments where science learning takes place. Before we review the research literature on the experiences of diverse populations with science and their access to it, we first define culture and equity. We then focus on science learning in four nondominant groups for which a research tradition has developed: girls and women, American In- dians, individuals from rural communities, and individuals with disabilities. In reviewing the research involving these groups, we explore such issues as engagement, identity, self-efficacy, and border crossing, which are related to diversity and science learning. We end with a set of guiding principles to develop culturally responsive and effective informal environments for science learning. CULTURE AND EQUITY Culture is a complex concept that is difficult to define succinctly. Most scholars agree, however, that culture includes the symbols, stories, rituals, tools, shared values, and norms of participation that people use to act, con- sider, communicate, assess, and understand both their daily lives and their images of the future (Brumann, 1999). Disagreements arise concerning the

OCR for page 209
 Diversity and Equity costs and benefits of treating culture as a noun, in which case it may lend itself to stereotyping, versus treating culture as a modifier—as in “people live culturally.” A closely related issue is how culture and cultural processes should be studied (Medin and Atran, 2004). If the study of culture is conceptualized as identifying shared norms and values, it is natural to assume that individuals become part of a culture through a process of socialization—that is, they acquire culture. If culture is instead seen as dynamic, contested, and variably distributed within and across groups, it is natural to see cultural learning as involving a reciprocal relationship between individuals’ goals, perspectives, abilities, and values and their environment (Hirschfeld, 2002). In this view, for example, in the earliest years of life, one’s socialization partially depends on agents or others who are caregivers as well as an individual’s interpretation of and reaction to their environment. Furthermore, as one grows older, associates, friends, organizations, and institutions become part of varying socialization processes, but the influence of each is dependent on an individual’s characteristics, and vice versa. Thus, socialization depends on access and opportunities, as well as the perspectives and attitudes that an individual brings to these op- portunities. From this perspective, in fact, one can see that while culture is often used in reference to ethnic or racial background, any group with some shared affiliation (e.g., people with disabilities, women), might be seen as having some shared cultural values and resources. Research on cultural variations in learning has tended to describe ethnic or racial cultural groups in a manner that is static. Although there are histori- cally rooted continuities that connect individuals across generations (Lee, 2003), describing culture in categorical terms to distinguish groups of people often leads to statements that attempt to describe the “essence” of groups. This can lead to stereotypes, such as the idea that Asian children are good at math or that girls struggle in science. Such statements treat culture as a fixed configuration of traits and assume that all group members share the same set of experiences, skills, and interests (Gutiérrez and Rogoff, 2003). Thus, they tend to obscure the heterogeneity of nondominant (and domi- nant) cultures. In addition, even when stereotypes are framed in an effort to illustrate the strength of a nondominant group or to compare groups, this reductive tendency can have negative impacts on members of a group (Steele, 1997). For example, there may be greater pressure placed on Asian children by their teachers and parents to excel in mathematics. Such statements can impact the self-esteem of children who do not excel in the manner that the statement claims. A cultural-historical perspective on how individuals and groups learn offers a way to move beyond the assumption that characteristics of cul- tural groups are homogeneous and solely located within individuals. This perspective stresses that culture is not a static set of traits but is something more dynamic and develops through an individual’s history of engagement

OCR for page 209
 Learning Science in Informal Environments in various practices. From this perspective, culture becomes a question of situating the social practices and histories of groups and less about attribut- ing certain styles to groups. In other words, culture is “the constellations of practices historically developed and dynamically shaped by communities in order to accomplish the purposes they value” (Nasir et al., 2006). Diversity and Equity Over the past several decades, concerns about equitable access to science for nondominant groups (as well as underutilization of the nation’s human resources) have been strong motivators in the issue of science equity. To that end, equity in science education has primarily focused on defining and identifying science content standards—that is, what students are expected to learn and achieve in science classrooms (Lee, 1999). Within these standards science has typically been represented as objective, universal knowledge— and culturally neutral. Moreover, some educators have stressed science as a set of practices that define a singular “culture of science” that would-be scientists must acquire. This view assumes, implicitly or explicitly, that the culture of science does not reflect the cultural values that people bring to science. We question this assumption, which is analogous to assuming that learners of a second language naturally speak without accent, without any trace of their first language. This assumption has resulted in an approach to equity that does not adequately address systemic factors that might restrict access or hinder individuals from nondominant groups from engaging and identifying with science (Secada, 1989, 1994). Thus, science equity has often resulted in attempts to provide equal access to opportunities already available to dominant groups, without con- sideration of cultural or contextual issues. Science instruction and learning experiences in informal environments often privilege the science-related practices of middle-class whites and may fail to recognize the science- related practices associated with individuals from other groups. In informal venues for learning science, for example in museums, some initiatives are aimed at introducing new audiences to existing museum science content, such as outreach initiatives offering reduced-cost admission or bringing ex - isting science programming that is, already offered to mainstream groups, to nondominant communities. The goal of such initiatives is to enable students to become members of the science community without changing existing science systems (Good, 1993, 1995; Matthews, 1994; Williams, 1994). This view of science equity has been called the assimilationist view of science equity (Lee, 1999). The logic of this view is that particular groups have not had sufficient access to science learning experiences. So to remedy that situation, educators deliver to nondominant groups the same kinds of learning experiences that have served dominant groups. Participation and achievement in science, however, are mediated by

OCR for page 209
 Diversity and Equity a complex set of sociocultural and systemic factors not often recognized in such science equity efforts. Principal among these is the idea that one’s social world and context shape values, skill sets, and expectations (Nasir et al., 2006). Thus, the act of exposing all individuals to the same learning environments does not result in science equity, because the environments themselves are designed in a manner that supports the cultural repertoire of the dominant culture. Alternatively, a group of theories portrays equity in science learning as a political process (Lee, 1999, 2005). This view assumes that as students from underrepresented populations gain access to science, they learn to ap- propriate the language and discourse of science and use it to address local or personal concerns. This perspective assumes that engagement in science by underrepresented populations will lead to a politically driven shift in the nature of science to better reflect the cultural practices and concerns of those underrepresented populations, which may result in more equitable power structures (Calabrese Barton, 1997, 1998a, 1998b; Calabrese Barton and Osborne, 1998; Eisenhart, Finkel, and Marion, 1996; Howes, 1998; Keller, 1982; Mayberry, 1998; Rodriguez, 1997). Thus, this orientation is a major departure from the assimilationist view, which sees science as the central goal to be reached by students who are at the margins and assumes the practices of science will remain unchanged by their participation (Calabrese Barton, 1998a, 1998b). A third perspective on science equity stems from the cultural anthropo- logical perspective. From this perspective, equity in science learning occurs when individuals from diverse backgrounds participate in science through opportunities that account for and value alternative views and ways of know- ing in their everyday worlds (Aikenhead, 1996; Cobern and Aikenhead, 1998; Costa, 1995; Gallard et al., 1998; Maddock, 1981; Pomeroy, 1994), while also providing access to science as practiced in the established scientific com- munity. This approach centers on making science accessible, meaningful, and relevant for diverse students by connecting their home and community cultures to science. Lee (1999) likens this perspective to biliteracy or bicultural- ism, whereby an individual can successfully bridge the culture of science. Carol Lee (1993, 1995, 2001) has used this approach to design learning environments that leverage knowledge associated with everyday experiences to support subject matter learning (in her case, literacy practices). Lee’s ap- proach, termed cultural modeling, works on the assumption that students who are speakers of African American vernacular English (AAVE) already tacitly engage in complex reasoning and interpretation of literary concepts, such as tropes and genres. She engages students in metacognitive conversations in which students make explicit the evidence and reasoning they are using in their discussions. The conversations might focus, for example, on how students know that rap lyrics are not intended to be taken literally and the

OCR for page 209
 Learning Science in Informal Environments strategies they use to interpret and reconstruct the intended meaning. These conversations reflect AAVE norms, such as multiparty talk and signifying. From this framework, cultural practices are seen as providing different perspectives. In other words, there is no cultureless or neutral perspective, no more than a photograph or painting could be without perspective. Everything is cultured (Rogoff, 2003), including the layout of designed experiences, such as museums (Bitgood, 1993; Duensing, 2006), and the practices associated with teaching science in school (Warren et al., 2001). For example, in a study of a collaborative of nine museums, Garibay, Gilmartin, and Schaefer (2002) found that participants who previously did not regularly visit museums initially needed more staff facilitation to help them better understand the learning and experiential goals of exhibits. Thus, the more one understands the role of culture and context in learning, particularly in science learning, the more effectively one can ensure that science is available to all children and adults. Learning Is a Cultural Process Working from the perspective that learning is a fundamentally cultural process (Nasir et al., 2006; Rogoff, 2003) in which conceptions of learning are historically and locally situated, science learning is viewed as a socio- cultural activity. Its practices and assumptions reflect the culture, cultural practices, and cultural values of scientists. In this section, we first describe the cultural nature of learning generally and then focus in on the specific aspects of science learning that make it a cultural activity (see Chapter 2 for related discussion). Focusing on the strengths of parents in working-class households, González, Moll, and Amanti (2005) have shown that children develop “funds of knowledge”—historically developed and accumulated strategies (skills, abilities, ideas) or bodies of knowledge that prove useful in a household, group, or community. This represents a fundamental shift in analysis and discussion of learning for nondominant groups. The traditional viewpoint often implies or even explicitly states that the cultural values and knowledge that circulate in nondominant cultural groups are deficient, not useful, or even counterproductive (Lareau, 1989, 2003; Rogoff and Chavajay, 1995). However, close analysis of parenting and childrearing practices shed new light on the productive exchanges and values in nondominant cultural groups and illustrate for researchers and educators how those can be leveraged in educational practice. Children all over the world explore their world and have conversations about causes and consequences, and the particular topics they discuss and the ways they learn to explore the world are likely to vary, depending on the cultural practices with which they grow up (Heath, 2007; Rogoff, 2003). People live in different environments across their life span, with varied

OCR for page 209
 Diversity and Equity exposure to activities relating to different science domains (e.g., fishing, farming, computer technology). What counts as learning and what types of knowledge are seen as “important” are closely tied to a community’s values and what is useful in that community context (Bruner, 1996; McDermott and Varenne, 2006). Everyday contexts and situations that are meaningful and important in children’s lives not only influence their repertoires of practice, but also are likely to afford the development of complex cognitive skills. This is evident in the studies of meaningful activities for individuals from various American cultures (Nasir, 2000, 2002; Nasir and Saxe, 2003; Rose, 2004). Nasir (2002) illustrated that playing basketball can be linked to an improved understand- ing of statistics and other mathematical concepts and that complex cogni- tive strategies are developed playing the game of dominoes. These studies illustrate that deep participation in such hobbies is linked to cognitive gains associated with knowledge valued by these cultures. For example, Nasir studied African American elementary school, high school, and adult dominoes tournament participants. Her findings show that players developed important general cognitive abilities, including perspective taking, numerical competence, and the ability to weigh multiple factors and goals at once. The development of these skills is intertwined with changes in the sociocultural setting of dominoes. The analysis of these data depicts the cognitive shifts that occurred among players of different age groups, the manner in which the sociocultural setting became intertwined with the cognitive shifts, and the shifting nature of the social setting. Rose’s (2004) depiction of the cognitive and physical skills developed by various blue-collar workers is a further illustration of the sociocultural nature of learning. In the workplace, groups and organizations develop specialized language, rituals, shared values, and norms of participation. Through their experiences and interactions with others in these settings, adults learn the various cognitive and physical skills needed to be successful at their jobs. The work lives of waiters, hair stylists, plumbers, welders, carpenters, and electri- cians are not usually associated with learning or learning science. However, Rose’s case studies illustrate how learning and even science learning occurs in the informal context of their work. The cognitive and physical skills of blue-collar work are learned in a manner that reflects the defining characteristics of learning in informal en- vironments, such as direct access to phenomena and learning with others (such as through apprenticeship relationships) (Rose, 2004). For example, in his observations of a carpentry class, Rose shows that high school students learned by planning and building objects in class and as volunteers at Habitat for Humanity sites. While working in small groups to build cabinets, tables, and homes, students learned many of the physical skills (e.g., measuring, sanding, sawing) required of carpenters. In these groups, students learned from “guided participation.” The more experienced students coached or

OCR for page 209
 Learning Science in Informal Environments facilitated more novice students’ use of tools or their understanding of how all the pieces come together. Students also learned important lessons just by being around others doing work. For example, one student said “You see work going on all around you. You see people making small, small mistakes, and you learn from that” (Rose, 2004, p. 76). The teacher also played an important role in the classroom. His assistance often came in the form of sharing tricks of the trade that he developed from years of experience. For example, when he noticed a student who was struggling to hammer a nail into a board, he explained that if the student moved his hand down on the tool he would produce more force. When the student made the adjustment, he was surprised at the different feel of swinging the hammer and that the hammer now seemed more power- ful. Rose explains that such interactions not only lead to learning a physical skill, but also lead to an awareness of the connection between the work and such scientific principles as force, friction, and balance. There is, of course, a substantial difference between knowing where to hold a hammer to exert the most force on a nail head and mastering a scientific explanation of the same. However, as diSessa (1993) has argued, learners may quickly develop embodied knowledge or “phenomenological principles” through such expe- riences. Later the learner may relate these phenomenological principles to more abstract concepts (e.g., force, momentum, leverage). The cultural and historical nature of learning relates not only to the ac- cumulation of facts and concepts, but also to identity development. As Lave and Wenger (1991) explain, “Learning involves the construction of identities. . . . [It is] an evolving form of membership” (p. 53). “Our identities are rich and complex because they are produced within the rich and complex set of relations of practice” (Wenger, 1998, p. 162). When speaking about identity, people often first consider such demographic characteristics as age, gender, socioeconomic status, race, and ethnicity. Although these factors no doubt have the potential to influence people’s attitudes and behavior, as well as the ways in which others may treat them in society, Fienberg and Leinhardt (2002) suggest: “Another conception of identity is that it includes the kinds of knowledge and patterns of experience people have that are relevant to a particular activity. This second view treats identity as part of a social context, where prominence of any given feature varies, depending on which aspects of the social context are most salient at a given time” (p. 168). This discussion of learning as a cultural process illustrates that how learn- ing occurs and what is learned are influenced by personal and contextual factors from early childhood through adulthood. Applying a sociocultural perspective to the different modes of learning and valued knowledge across and within cultures can move the discussion from one based on a deficit model to one that recognizes and values the contributions of a wide variety of cultural groups.

OCR for page 209
 Diversity and Equity Science Learning Is Cultural Too often cultural diversity in science learning is studied by comparing the skills and knowledge of children from nondominant groups with those from the dominant group (Chavajay and Rogoff, 1995). In these comparisons, mainstream skills and upbringing are considered “normal” and variations observed in nondominant groups are taken as aberrations that produce deficits, lending support to a deficit model of diversity. Such studies do not appropriately account for the cultural nature of education environments or the diverse practices of science. Science has been described by some as a social construct, “heavily de- pendent on cultural contexts, power relationships, value systems, ideological dogma and human emotional needs” (Harding, 1998, p. 3). Although this view of science is a contested one, seeing science as “a culturally-mediated way of thinking and knowing suggests that learning can be defined as engagement with scientific practices” (Brickhouse, Lowery, and Schultz, 2000, p. 441). This, in turn, can lead to expectations and limitations that greatly impact who engages in science and how science is conducted. When people enter into the practices of science, they do not shed their cultural world views at the door. Calabrese Barton (1998b) argues for allowing science and science understanding to grow out of lived experiences and that, in doing so, people “remove the binary distinction from doing science or not doing science and being in science or being out of science . . . allow[ing] connections between [learners’] life worlds and science to be made more easily . . . [and] providing space for multiple voices to be heard and explored” (p. 389). This view is a very powerful one when one considers the goals of informal environments for learning science. It has also been argued that the field of science itself is quite diverse in the methods it employs. Nobel laureate physicist P.W. Bridgeman argued that “there is no scientific method as such” (Dalton, 1967, cited in Bogdan and Biklen, 2007). He continued by stating that “many eminent physicists, chemists, and mathematicians question whether there is a reproducible method that all investigators could or should follow, and they have been shown in their research to take diverse, and often unascertainable steps in discovering and solving problems” (Dalton, 1967, p. 41). This conception of science illustrates the need to cultivate various ways of knowing, learning, and evaluating evidence. Ways of knowing, learning, and evaluating evidence are connected to the language and discourse styles accepted in science and science learning. Traditional classroom practices have been found to be successful for students whose discourse practices at home resemble those of school science—mainly students from middle-class and upper-middle class European American homes (Kurth, Anderson, and Palincsar, 2002). Such practices create an exclusionary aspect to science in which the discourse of science functions as a gatekeeper

OCR for page 209
8 Learning Science in Informal Environments barring individuals from nondominant groups, because their science-related practices may not be acknowledged (Lee and Fradd, 1998; Lemke, 1990; Moje, Collazo, Carillo, and Marx, 2001; Brown, 2006). Recognizing that language use and discourse patterns may vary across culturally diverse groups, researchers point to the importance of recogniz- ing the use of informal and native language, as well as culturally developed communication and interaction patterns in science education (e.g., Lee and Fradd, 1996; Warren et al., 2001; Moschkovich, 2002). Lee and Fradd (1996) noted distinct patterns of discourse (e.g., use of simultaneous or sequential speech) around science topics in groups of students from different back- grounds. As mentioned earlier, Rosebery, Warren, and Conant (1992) identi- fied connections between Haitian Creole students’ skills in story-telling and argumentation and science inquiry, using those connections to support their learning of both the content and the practices of science. Hudicourt-Barnes (2001) demonstrated how bay odyans—the Haitian argumentative discus- sion style—can be a great resource for students as they practice science and scientific discourse. Children’s experience with scientific thinking also varies a great deal, depending on a range of issues, such as culture, gender, and parents’ edu- cational, financial, and occupational background. For example, Valle (2007) found that parents with college majors in engineering were more likely to discuss scientific evidence with their children in the context of conflicting claims (e.g., the relative advantages and disadvantages of food additives) than were parents with a background in the humanities. The cultural nature of science described in this section illustrates the need to expand the perspective on what counts as scientific thinking and competence. Science education often tends to privilege certain ways of demonstrating understanding of a phenomenon or topic (Ballenger, 1997). Therefore it is often difficult for students of diverse backgrounds to reconcile their own discursive norms with the norms of scientific discourse typically presented in both formal and informal environments for learning. A potential consequence of this narrow view of science practices is that students may dis-identify with science, perceiving it as incompatible with their own cultural values (Lederman, Abd-El-Khalick, Bett, and Schwartz, 2002). CULTURE AND SCIENTIFIC KNOWLEDGE Research exploring the access to and participation in science of specific groups is generally limited. However, there is an emergent research base related to science learning in informal environments for a small set of under- represented cultures. Here, we synthesize research on four groups and their experiences with learning science in informal environments. In this synthesis we illustrate common themes that underlie the experiences of individuals with varied cultural and historical backgrounds.

OCR for page 209
 Diversity and Equity Gender The largest body of research with regard to access and equity in science learning focuses on gender with specific attention to underrepresentation of women. Gender can be viewed, and ultimately studied, from a range of perspectives. The prevailing view of gender in the field is that it is not a fixed attribute, but it is constructed in social interactions (Murphy and Whitelegg, 2006). Gender is only one component of diversity, and, despite the overlap- ping similarities among women, issues of ethnicity, class, culture, and the like all contribute to socialization and play a role in learning. Statistically, a case can be made that gender impacts career success and pursuits in ways that are inconsistent with women’s level of achievement. Although there is convincing evidence that gender does not define capabil- ity, its impact on skill and capacity building is unclear. Statistical Evidence of Gender Disparities Statistics suggest continued areas of inequity, but overall, there are great improvements in science participation by gender. Recent statistics suggest that, since 2000, women have earned more science and engineering bach- elors degrees than men (National Science Foundation, 2007). However, the numbers are less favorable when separated by area of science. For example, the gap in male and female degree earners in computer sciences has wid- ened over the past few years (National Science Foundation, 2007). In their review of research on gender differences in mathematics and science learn- ing, Halpern and colleagues (2007) found small mean differences between male and female science achievement and ability in comparison to the large variance within male and within female scores. The variance in male scores is consistently greater than that found in female scores, leading to more men than women scoring in the highest and lowest quartiles in tests of science achievement and ability. In general, the differences between male and female participation in science have been decreasing over the past 20 years (National Science Foun- dation, 2002). Women constituted a greater percentage of science graduate students in 2004 than in 1994, growing from 37 to 42 percent. This varied by field of science. In 2004, women made up 74 percent of the graduate students in psychology, 56 percent in biology, and 53 percent in social sci- ences. However, women accounted for only 22 percent of graduate students in engineering and 27 percent in computer sciences, with a 30-45 percent representation in most other science fields (National Science Foundation, 2007). Disparity in participation in science increases further along the edu- cational continuum (Lawler, 2002; Mervis, 1999; Sax, 2001). Seymour and Hewitt (1997) found that undergraduate women were more likely to leave the sciences than similarly achieving men.

OCR for page 209
 Diversity and Equity draw upon participants’ cultural practices, including everyday language, linguistic practices, and common cultural experiences. Members of diverse cultural groups can play a critical role in the development and implementa- tion of programs, serving as designers, advisers, front-line educators, and evaluators of such efforts. REFERENCES Aikenhead, G. (1996). Science education: Border crossing into the subculture of sci- ence. Studies in Science Education, 27, 1-52. Aikenhead, G. (1998). Many students cross cultural borders to learn science: Implica- tions for teaching. Australian Science Teachers’ Journal, 44 (4), 9-12. Aikenhead, G. (2001). Cross-cultural science teaching: Praxis. A paper presented at the annual meeting of the National Association for Research in Science Teach- ing, St. Louis, March 26-28. Allen, G., and Seumptewa, O. (1993). The need for strengthening Native American science and mathematics education. In S. Carey (Ed.), Science for all cultures: A collection of articles from NSTA’s journals (pp. 38-43). Arlington, VA: National Science Teachers Association. American Association for the Advancement of Science. (1976). A r eport on the bar- riers obstructing entry of Native Americans into the sciences. Washington, DC: Author. American Association of University Women. (1995). Growing smart: What’s working for girls in school. Researched by S. Hansen, J. Walker, and B. Flom at the University of Minnesota’s College of Education and Human Development. Ash, D. (2004). Reflective scientific sense-making dialogue in two languages: The science in the dialogue and the dialogue in the science. Science Education, 88, 855-884. Baker, D. (1992). I am what you tell me to be: Girls in science and mathematics. As- sociation of Science-Technology Centers Newsletter, 20 (4), 5, 6, 14. Ballenger, C. (1997). Social identities, moral narratives, scientific argumentation: Sci- ence talk in a bilingual classroom. Language and Education, 11 (1), 1-14. Bang, M., Medin, D.L., and Atran, S. (2007, August). Cultural mosaics and mental models of nature. Proceedings of the National Academy of Sciences, 104 (35), 13868-13874. Banks, J.A. (2007). Educating citizens in multicultural society (2nd ed.). New York: Teachers College Press. Barron, B. (2006). Interest and self-sustained learning as catalysts of development: A learning ecology perspective. Human Development, 49 (4), 193-224. Basu, S.J., and Calabrese Barton, A. (2007). How do urban minority youth develop a sustained interest in science? Journal of Research in Science Teaching, 44 (3), 466-489. Bell, P., Bricker, L.A., Lee, T.R., Reeve, S., and Zimmerman, H.T. (2006). Understand- ing the cultural foundations of children’s biological knowledge: Insights from everyday cognition research. In S.A. Barab, K.E. Hay, and D. Hickey (Eds.), Proceedings of the seventh international conference of the learning sciences (pp. 1029-1035). Mahwah, NJ: Lawrence Erlbaum Associates.

OCR for page 209
8 Learning Science in Informal Environments Bitgood, S. (1993). Social influences on the visitor museum experience. Visitor Be- havior, 8(3), 4-5. Bogdan, R., and Biklen, S.K. (2007). Qualitative research for education: An introduc- tion to theory and methods (5th ed.). Boston: Pearson/Allyn and Bacon. Borun, M., Dritsas, J., Johnson, J.I., Peter, N.E., Wagner, K.F., Fadigan, K., Jangaard, A., Stroup, E., and Wenger, A. (1998). Family learning in museums: The PISEC perspective. Philadelphia: Franklin Institute. Brayboy, B.M.J., and Castagno, A.E. (2007). How might native science inform “informal science learning”? Background paper for the Committee on Learning Science in Informal Environments. Available: http://www7.nationalacademies.org/bose/ Brayboy_and%20Castagno_Commissioned_Paper.pdf [accessed October 2008]. Bricker, L.A., and Bell, P. (2008). Evidentiality and evidence use in children’s talk across everyday contexts. Everyday Science and Technology Group, University of Washington. Brickhouse, N.W., Lowery, P., and Schultz, K. (2000). What kind of a girl does science? The construction of school science identities. Journal of Research in Science Teaching, 37 (5), 441-458. Brown, B.A. (2006). “It isn’t no slang that can be said about this stuff”: Language, identity, and appropriating science discourse. Journal of Research in Science Teaching, 43 (1), 96-126. Brumann, C. (1999). Writing for culture: Why there is no need to discard a successful concept. Current Anthropology, 40 (1), S1-S27. Bruner, J. (1996). The culture of education. Cambridge, MA: Harvard University Press. Cajete, G. (1988). Motivating American Indian students in science and math. Las Cruces, NM: ERIC Clearinghouse on Rural Education and Small Schools. Cajete, G. (1993). Look top the mountain: An ecology of Indian education. Skyland, NC: Kivaki Press. Cajete, G. (1999). The Native American learner and bicultural science education. In K. Swisher and J. Tippeconnic (Eds.), Next steps: Research and practice to advance Indian education (pp. 135-160). Charles Town, WV: ERIC Clearinghouse on Rural Education and Small Schools. Calabrese Barton, A. (1997). Liberatory science education: Weaving connections between feminist theory and science education. Curriculum Inquiry, 27, 141-163. Calabrese Barton, A. (1998a). Teaching science with homeless children: Pedagogy, representation, and identity. Journal of Research in Science Teaching, 35 (4), 379-394. Calabrese Barton, A. (1998b). Reframing “science for all” through the politics of poverty. Educational Policy, 12, 525-541. Calabrese Barton, A., and Brickhouse, N.W. (2006). Engaging girls in science. In C. Skelton, B. Francis, and L. Smulyan (Eds.), Handbook of gender and education (pp. 221-235). Thousand Oaks, CA: Sage. Calabrese Barton, A., and Osborne, M.D. (Eds.). (1998). Marginalized discourses and pedagogies: Constructively confronting science for all. Journal of Research in Science Teaching, 35 (4), 339-340. Carey, S. (1985). Conceptual change in childhood. Cambridge, MA: MIT Press.

OCR for page 209
 Diversity and Equity Carlisle, J.F. (1999). Free recall as a test of reading comprehension for students with learning disabilities. Learning Disability Quarterly, 22 (1), 11-22. Chavajay, P., and Rogoff, B. (1995). What’s become of research on the cultural view of cognitive development? American Psychologist, 50 (10), 859-877. Cobb, P., Confrey, J., diSessa, A., Lehrer, R., and Schauble, L. (2003). Design experi- ments in education research. Education Researcher, 32 (1), 9-13. Cobern, W.W., and Aikenhead, G.S. (1998). Cultural aspects of learning science. In B. Fraser and K. Tobin (Eds.), International handbook of science education (Part One, pp. 39-52). Dordrecht, Netherlands: Kluwer Academic. Coley, J.D., Vitkin, A.Z., Seaton, C.E., and Yopchick, J.E. (2005). Effects of experience on relational inferences in children: The case of folk biology. In B.G. Bara, L. Barsalou, and M. Bucciarelli (Eds.), Proceedings of the 27th Annual conference of the cognitive science society (pp. 471-475). Mahwah, NJ: Lawrence Erlbaum Associates. Costa, V.B. (1995). When science is “another world”: Relationships between worlds of family, friends, school, and science. Science Education, 79, 313-333. Crowley, K., Callanan, M.A., Jipson, J., Galco, J., Topping, K., and Shrager, J. (2001a). Shared scientific thinking in everyday parent-child activity. Science Education, 85 (6), 712-732. Crowley, K., Callanan, M.A., Tenenbaum, H.R., and Allen, E. (2001b). Parents explain more often to boys than to girls during shared scientific thinking. Psychological Science, 12, 258-261. Davison, D.M., and Miller, K.W. (1998). An ethnoscience approach to curriculum issues for American Indian students. School Science and Mathematics, 98 (5), 260. DeBoer, G. (1991). A history of ideas in science education: Implications for practice. New York: Teachers College Press. Delpit, L. (1988). The silenced dialogue: Power and pedagogy in educating other people’s children. Harvard Educational Review, 58 (3). Delpit, L. (1995). Other people’s children: Cultural conflict in the classroom. New York: W.W. Norton. Diamond, J. (1986). The behavior of family groups in science museums. Curator, 29 (2), 139-154. Dierking, L.D. (1987). Parent-child interactions in a free choice learning setting: An examination of attention-directing behaviors. Unpublished doctoral dissertation, University of Florida, Gainesville. diSessa, A.A. (1993). Toward an epistemology of physics. Cognition and Instruction, 10 (2-3), 105-225. Duensing, S. (2006). Culture matters: Science centers and cultural contexts. In Z. Bekerman, N. Burbules, and D. Silberman-Keller (Eds.), Learning in places: The informal education reader (pp. 183-202). New York: Peter Lang. Eisenhart, M. (2001). Moving women from school to work in science: Curriculum demands, adult identities, and life transitions. Journal of Women and Minorities in Science and Engineering, 7, 199-213. Eisenhart, M., and Finkel, E. (1998). Women’s science: Learning and succeeding from the margins. Chicago: University of Chicago Press. Eisenhart, M., Finkel, E., and Marion, S.F. (1996). Creating the conditions for scien- tific literacy: A re-examination. American Educational Research Journal, 33, 261-295.

OCR for page 209
0 Learning Science in Informal Environments Ellenbogen, K.M. (2002). Museums in family life: An ethnographic case study. In G. Leinhardt, K. Crowley, and K. Knutson (Eds.), Learning conversations in museums (pp. 81-101). Mahwah, NJ: Lawrence Erlbaum Associates. European Commission. (2008). Gender Impact Assessment of the Specific Programmes of the Fifth Program, An Overview. Brussels, Belgium. Fadigan, K.A., and Hammrich, P.L. (2005). Informal science education for girls: Careers in science and effective program elements. Science Education Review, 4 (3), 83-90. Falk, J.H., and Dierking, L.D. (1992). The museum experience. Washington, DC: Howells House. Falk, J., and Dierking, L.D. (2000). Learning from museums. Walnut Creek, CA: AltaMira Press. Fienberg, J., and Leinhardt, G. (2002). Looking through the glass: Reflections of identity in conversations at a history museum. In G. Leinhardt, K. Crowley, and K. Knutson (Eds.), Learning conversations in museums (pp. 167-211). Mahwah, NJ: Lawrence Erlbaum Associates. Fort, D.C., Bird, S.J., and Didion, C.J. (1993). A hand up: Women mentoring women in science. Washington, DC: Association for Women in Science. Frome, P.M., and Eccles, J.S. (1998). Parents’ influence on children’s achievement-relat- ed perceptions. Journal of Personality and Social Psychology, 74 (2), 435-452. Gallagher, J., and Hogan, K. (2000). Intergenerational, community-based learning and science education. Journal of Research in Science Teaching, 37 (2), 107-108. Gallard, A., Viggiano, E., Graham, S., Stewart, G., and Vigliano, M. (1998). The learn- ing of voluntary and involuntary minorities in science classrooms. In B. Fraser and K. Tobin (Eds.), International handbook of science education (Part Two, pp. 941-954). Dordrecht, Netherlands: Kluwer Academic. Garibay, C. (2004a). Animal secrets bilingual labels formative evaluation. Unpublished manuscript, Garibay Group, Chicago. Garibay, C. (2004b). Museums and community outreach: A secondary analysis of a museum collaborative program. Unpublished master’s thesis, Saybrook Graduate School and Research Center, San Francisco. Garibay, C. (2006a). Washington metropolitan area Latino research study. Unpublished manuscript, Garibay Group, Chicago. Garibay, C. (2006b). Chicago area Latino audience research for the Brookfield Zoo. Unpublished manuscript, Garibay Group, Chicago. Garibay, C. (2007). Palm Springs Art Museum: Latino audience research. Unpublished manuscript, Garibay Group, Chicago. Garibay, C., and Gilmartin, J. (2003). Chocolate summative evaluation at the Field Museum. Unpublished manuscript, Garibay Group, Chicago. Garibay, C., Gilmartin, J., and Schaefer, J. (2002). Park Voyagers summative evalua- tion. Unpublished manuscript, Garibay Group, Chicago. Gender Equity Expert Panel. (2000). Exemplary and promising gender equity programs 2000. Washington, DC: U.S. Department of Education. Available: http://www. ed.gov/pubs/genderequity/gender_equity.pdf [accessed October 2008]. Ginther, D.K., and Kahn, S. (2006). Does science promote women? Evidence from aca- demia 1973-2001. Cambridge, MA: National Bureau of Economic Research.

OCR for page 209
 Diversity and Equity González, N., Moll, L.C., and Amanti, C. (Eds.). (2005). Funds of knowledge: Theorizing practices in households, communities, and classrooms. Mahwah, NJ: Lawrence Erlbaum Associates. Good, R. (1993). Editorial: The slippery slopes of postmodernism. Journal of Research in Science Teaching, 30 (5), 427. Good, R.G. (1995). Comments on multicultural science education. Science Educa- tion, 79 (3), 335-336. Gutiérrez, K.D., and Rogoff, B. (2003). Cultural ways of knowing: Individual traits or repertoires of practice. Educational Researcher, 32 (5), 19-25. Halpern, D.F., Benbow, C.P., Geary, D.C., Gur, R.C., Hyde, J.S., and Gernsbacher, M.A. (2007). The science of sex differences in science and mathematics. Psychological Science in the Public Interest, Supplement, 8 (1), 1-51. Harding, S. (1998). Is science multicultural? Postcolonialisms, feminisms, and episte- mologies. Bloomington: Indiana University Press. Hathaway, R.S., Sharp, S., and Davis, C.S. (2001). Programmatic efforts affect reten- tion of women in science and engineering. Journal of Women and Minorities in Science and Engineering, 7, 107-124. Hattie, J.A., Marsh, H.W., Neill, J.T., and Richards, G.E. (1997). Adventure education and Outward Bound: Out-of-class experiences that make a lasting difference. Review of Educational Research, 67 (1), 43-87. Haukoos, G., and LeBeau, D. (1992). Inservice activity that emphasizes the importance of culture in teaching school science. Journal of American Indian Education, 32 (1), 1-11. Heath, S., (2007). Diverse learning and learner diversity in “informal” science learn- ing environments. Background paper for the Committee on Science Educa- tion for Learning Science in Informal Environments. Available: http://www7. nationalacademies.org/bose/Learning_Science_in_Informal_Environments_ Commissioned_Papers.html [accessed November 2008]. Hirshfeld, L.A. (2002). Why anthropologists don’t like children. American Anthro- pologist, 104 (2), 611-627. Howes, E.V. (1998). Connecting girls and science: A feminist teacher research study of a high school prenatal testing unit. Journal of Research in Science Teaching, 35 (8), 877-896. Hudicourt-Barnes, J. (2001). Bay odyans: Argumentation in Haitian Creole classrooms. Hands On!, 24 (2), 7-9. Inagaki, K. (1990). The effects of raising animals on children’s biological knowledge. British Journal of Developmental Psychology, 8, 119-129. Institute of Education Sciences. (2007). Encouraging girls in math and science: IES practice guide (NCER 2007-2003). Washington, DC: U.S. Department of Education. Jacobs, J.E., Davis-Kean, P., Bleeker, M., Eccles, J.S., and Malanchuk, O. (2005). “I can, but I don’t want to”: The impact of parents, interests, and activities on gender differences in math. In A.M. Gallagher and J.C. Kaufman (Eds.), Gender differ- ences in mathematics: An integrative psychological approach (pp. 246-263). New York: Cambridge University Press. Jones, G., and Wheatley, J. (1990). Gender differences in teacher-student interactions in science classrooms. Journal of Research in Science Teaching, 27 (9), 861-874.

OCR for page 209
 Learning Science in Informal Environments Jovanovic, J., and King, S.S. (1998). Boys and girls in the performance-based sci- ence classroom: Who’s doing the performing? American Educational Research Journal, 35 (3), 477-496. Kahle, J.B. (1998). Equitable systemic reform in science and mathematics: Assess- ing progress. Journal of Women and Minorities in Science and Engineering, 4, 91-112. Kahle, J.B., and Meece, J. (1994). Research on gender issues in the classroom. In D. Gabel (Ed.), Handbook of research on science teaching and learning (pp. 542- 557). New York: Macmillan. Kawagley, A.O. (1999). Alaska native education: History and adaptation in the new millennium. Journal of American Indian Education, 39 (1), 31-35. Keller, E. (1982). Feminism and science. Signs: Journal of Women in Culture and Society, 7 (3), 589-602. Kurth, L.A., Anderson, C., and Palincsar, A.S. (2002). The case of Carla: Dilemmas of helping all students to understand science. Science Education, 86 (3), 287-313. Laetsch, W.M., Diamond, J., Gottfried, J.L., and Rosenfeld, S. (1980). Children and family groups in science centres. Science and Children, 17 (6), 14-17. LaLonde, R.J., O’Muircheartaigh, C., Perkins, J., English, N., Grams, D., and Joynes, C. (2006). Mapping cultural participation in Chicago. Monograph. Chicago: University of Chicago, Cultural Policy Center. Lareau, A. (1989). Home advantage: Social class and parental intervention in elemen- tary education (2nd ed.). Lanham, MD: Rowan and Littlefield. Lareau, A. (2003). Unequal childhoods: Class, race, and family life. Berkeley: Uni- versity of California Press. Lave, J., and Wenger, E. (1991). Situated learning: Legitimate peripheral participation. New York: Cambridge University Press. Lawler, A. (2002). Engineers marginalized, MIT report concludes. Science, 295 (5563), 2192. Lederman, N.G., Abd-El-Khalick, F., Bell, R.L., and Schwartz, R.S. (2002). Views of the nature of science questionnaire: Towards valid and meaningful assessment of learners’ conceptions of the nature of science. Journal of Research in Science Teaching, 39 (6), 497-521. Lee, C. (1993). Signifying as a scaffold for literary interpretation: The pedagogical im- plications of an African American discourse genre. Urbana, IL: National Council of Teachers of English. Lee, C. (1995). A culturally based cognitive apprenticeship: Teaching African American high school students skills in literary interpretation. Reading Research Quarterly, 30 (4), 608-630. Lee, C. (2001). Is October Brown Chinese? A cultural modeling activity system for underachieving students. American Educational Research Journal, 38 (1), 97-141. Lee, C. (2003). Toward a framework for culturally responsive design in multimedia computer environments: Cultural modeling as a case. Mind, Culture, and Activ- ity, 10 (2), 42-61. Lee, O. (1999). Equity implications based on the conceptions of science achievement in major reform documents. Review of Educational Research, 69 (1), 83-115. Lee, O. (2005). Science education and English language learners: Synthesis and re- search agenda. Review of Educational Research, 75 (4), 491-530.

OCR for page 209
 Diversity and Equity Lee, O., and Fradd, S.H. (1996). Interactional patterns of linguistically diverse students and teachers: Insights for promoting science learning. Linguistics and Education: An International Research Journal, 8 (3), 269-297. Lee, O., and Fradd, S.H. (1998). Science for all, including students from non-English- language backgrounds. Educational Researcher, 27(4), 12-21. Lehrer, R., and Schauble, L. (2006). Scientific thinking and science literacy. In K.A. Renninger, W. Damon, I.E. Sigel, and R.M. Lerner (Eds.), Handbook of child psychology: Child psychology in practice (vol. 4, 6th ed.). Hoboken, NJ: Wiley. Lemke, J.L. (1990). Talking science: Language, learning and values. Norwood, NJ: Ablex. Lips, H.M. (2004). The gender gap in possible selves: Divergence of academic self- views among high school and university students. Sex Roles, 50 (5/6), 357-371. MacIvor, M. (1995). Redefining science education for aboriginal students. In M. Battiste and J. Barman (Eds.), First nations education in Canada: The circle unfolds (pp. 73-98). Vancouver: University of British Columbia Press. Maddock, MN. (1981). Science education: An anthropological viewpoint. Studies in Science Education, 8, 1-26. Malcom, S.M., and Matyas, M.L. (Eds.) (1991). Investing in human potential: Science and engineering at the crossroads. Washington, DC: American Association for the Advancement of Science. Martin, K. (1995). The foundational values of cultural learning: The Akhkwasahsne science and math pilot project. Winds of Change, 10 (4), 50-55. Matthews, C., and Smith, W. (1994). Native American related materials in elementary science instruction. Journal of Research in Science Teaching, 41 (3), 363-380. Matthews, M.R. (1994). Science teaching: The role of history and philosophy of science. New York: Routledge. Mayberry, M. (1998). Reproductive and resistant pedagogies: The comparative roles of collaborative learning and feminist pedagogy in science education. Journal of Research in Science Teaching, 35 (4), 443-459. McCarthy, T.L. (1980). Language use by Yavapai-Apache students with recommen- dations for curriculum design. Journal of American Indian Education, 20 (1), 1-9. McCreedy, D. (2005). Engaging adults as advocates. Curator, 48 (2), 158-176. McDermott, R., and Varenne, H. (1995). Culture as disability. Anthropology and Edu- cation Quarterly, 26, 324-348. McDermott, R., and Varenne H. (1996). Culture, development, disability. In R. Jessor, A. Colby, and R.A. Shweder (Eds.), Ethnography and human development: Context and meaning in social inquiry (pp. 101-126). Chicago: University of Chicago Press. McDermott, R., and Varenne, H. (2006). Reconstructing culture in educational research. In G. Spindler and L. Hammond (Eds.), Innovations in educational ethnography (p. 3-31). Mahwah, NJ: Lawrence Erlbaum Associates. McGlone, M.S., and Aronson, J. (2006). Stereotype threat, identity salience, and spatial reasoning. Journal of Applied Developmental Psychology, 27 (5), 486-493. Medin, D.L., and Atran, S. (2004). The native mind: Biological categorization, reason- ing and decision making in development across cultures. Psychological Review, 111 (4), 960-983.

OCR for page 209
 Learning Science in Informal Environments Mervis, J., (April, 1999). High level groups study barriers women face. Science, 284 (5415), 727. Moje, E., Collazo, T., Carillo, R., and Marx, R. (2001). “Maestro, what is quality?”: Language, literacy and discourse in project-based science. Journal of Research in Science Teaching, 38 (4), 469-498. Molander, B., Pedersen, S., and Norell, K. (2001). Deaf pupils’ reasoning about scientific phenomena: School science as a framework for understanding or as fragments of factual knowledge. Journal of Deaf Studies and Deaf Education, 6 (3), 200-211. Morocco, C.C. (2001). Teaching for understanding with students with disabilities: New directions for research on access to the general education curriculum. Learning Disability Quarterly, 24 (1), 5-23. Moschkovich, J.N. (2002). A situated and sociocultural perspective on bilingual math- ematics learners. Mathematical Thinking and Learning, 4 (2-3), 189-212. Murphy, P., and Whitelegg, E. (2006). Girls and physics: Continuing barriers to be- longing. Curriculum Journal, 17, 281-305. Nasir, N.S. (2000). “Points ain’t everything”: Emergent goals and average and percent understandings in the play of basketball among African American students. Anthropology and Education Quarterly, 31 (3), 283-305. Nasir, N.S. (2002). Identity, goals, and learning: Mathematics in cultural practice. Mathematics Thinking and Learning, 2 (2-3), 213-248. Nasir, N., and Saxe, G. (2003). Ethnic and academic identities: A cultural practice perspective on emerging tensions and their management in the lives of minority students. Educational Researcher, 32 (5), 14-18. Nasir, N.S., Rosebery, A.S., Warren B., and Lee, C.D. (2006). Learning as a cultural process: Achieving equity through diversity. In R.K. Sawyer (Ed.), The Cam- bridge handbook of the learning sciences (pp. 489-504). New York: Cambridge University Press. National Center for Education Statistics. (2003). Trends in international mathemat- ics and science study (TIMSS). Available: http://nces.ed.gov/timss/results03.asp [accessed October 2008]. National Center for Education Statistics. (2006). Digest of education statistics: 2006 digest tables. Available: http://nces.ed.gov/programs/digest/2006menu_tables. asp [accessed October 2008]. National Research Council. (2007). Taking science to school: Learning and teaching science in grades K-8. Committee on Science Learning, Kindergarten Through Eighth Grade. R.A. Duschl, H.A. Schweingruber, and A.W. Shouse (Eds.). Board on Science Education, Center for Education, Division of Behavioral and Social Sciences and Education. Washington, DC: The National Academies Press. National Science Foundation. (2002). Gender differences in the careers of academic scientists and engineers. (NSF 04-323.) Arlington, VA: Author. National Science Foundation. (2007). Women, minorities, and persons with disabilities in science and engineering. (NSF 07-315.) Arlington, VA: Author. Nelson-Barber, S., and Estrin, E. (1995). Culturally responsive mathematics and sci- ence education for Native students. Washington, DC: Native Education Initiative of the Regional Educational Labs.

OCR for page 209
 Diversity and Equity Packard, B.W.-L., and Nguyen, D. (2003). Science career-related possible selves of adolescent girls: A longitudinal study. Journal of Career Development, 29 (4), 251-263. Palincsar, A.S., Collins, K.M., Marano, N.L., and Magnusson, S.J. (2000). Investigating the engagement and learning of students with learning disabilities in guided inquiry science teaching. Language, Speech, and Hearing Services in the Schools, 31, 240-251. Pomeroy, D. (1994). Science education and cultural diversity: Mapping the field. Studies in Science Education, 24, 49-73. Reich, C., Chin, E., and Kunz, E. (2006). Museums as forum: Engaging science center visitors in dialogue with scientists and one another. Informal Learning Review, 79, 1-8. Ritchie, S., and Butler, J. (1990). Aboriginal studies and the science curriculum: Af- fective outcomes from a curriculum intervention. Research in Science Education, 20, 249-254. Rivard, L.P. (2004). Are language-based activities in science effective for all students, including low achievers? Science Education, 88 (3), 420-442. Roald, I., and Oyvind, M. (2001, April). Configuration and dynamics of the earth- sun-moon system: An investigation into conceptions of deaf and hearing pupils. International Journal of Science Education Journal, 23 (4), 423-440. Rockman Et Al. (2007). Media-based learning science in informal environments. Background paper for the Committee on Learning Science in Informal Environ- ments. Available: http://www7.nationalacademies.org/bose/Rockman_et%20al_ Commissioned_Paper.pdf [accessed October 2008]. Rodriguez, A.J. (1997). The dangerous discourse of invisibility: A critique of the National Research Council’s national science education standards. Journal of Research in Science Teaching, 34 (1), 19-37. Rogoff, B. (2003). The cultural nature of human development. New York: Oxford University Press. Rogoff, B., and Chavajay, P. (1995). What’s become of research on the cultural basis of cognitive development? American Psychologist, 50, 859-877. Rose, D., and Meyer, A. (2002). Teaching every student in the digital age: Universal design for learning. Alexandria, VA: Association for Supervision and Curriculum Development. Rose, M. (2004). Mind at work: Valuing the intelligence of the American worker. New York: Penguin Group. Rosebery, A.S., Warren, B., and Conant, F. (1992). Appropriating scientific discourse: Findings from language minority classrooms. Journal of the Learning Sciences, 2, 61-94. Ross, N., Medin, D., Coley, J.D., and Atran, S. (2003). Cultural and experiential differ- ences in the development of folk biological induction. Cognitive Development, 18(1), 25-47. Sachatello-Sawyer, B. (1996). Coming of age: An assessment of the status of adult education methodology in museums. Doctoral dissertation, Montana State Uni- versity, Bozeman. Sadker, M., and Sadker, D. (1992). Ensuring equitable participation in college classes. New Directions for Teaching and Learning, 49, 49-56.

OCR for page 209
 Learning Science in Informal Environments Sadker, M., and Sadker, D.M. (1994). Failing at fairness: How America’s schools cheat girls. New York: Scribner. Sax, L.J. (2001). Undergraduate science majors: Gender differences in who goes to graduate school. Review of Higher Education, 24 (2), 153-172. Secada, W.G. (1989). Educational equity versus equality of education: An alternative conception. In W.G. Secada (Ed.), Equity in education (pp. 68-88). Philadelphia: Falmer Press. Secada, W.G. (1994). Equity and the teaching of mathematics. In M.M. Atwater, K. Radzik-Marsh, and M. Strutchens (Eds.), Multicultural education: Inclusion of all (pp. 19-38). Athens: University of Georgia. Seeing Gender. (2006). Seeing gender: Tools for change. Available: http://www.meac. org/Resources/ed_services/SG_WEB/SeeingGender/Resources.html [accessed October 2008]. Seymour, E., and Hewitt, N.H. (1997). Talking about leaving: Why undergraduates leave the sciences. Boulder, CO: Westview Press. Simpkins, S.D., Davis-Kean, P.E., and Eccles, J.S. (2006). Math and science motivation: A longitudinal examination of the links between choices and beliefs. Develop- mental Psychology, 42, 70-83. Snively, G. (1995). Bridging traditional science and western science in the multicul- tural classroom. In G. Snively and A. MacKinnon (Eds.), Thinking globally about mathematics and science education (pp. 53-75). Vancouver: University of British Columbia, Centre for the Study of Curriculum and Instruction. Snively, G., and Corsiglia, J. (2001). Discovering indigenous science: Implications for science education. Science Education, 85 (1), 6-34. Steele, C. (1997). A threat in the air: How stereotypes shape intellectual identify and performance. American Psychologist, 52 (6), 613-619. Steele, C.M., and Aronson, J. (1995). Stereotype threat and the intellectual test per- formance of African Americans. Journal of Perspective Social Psychology, 69 (5), 797-811. Steinmetz, E. (2006). Americans with disabilities: 2002. Current Population Reports, P70-P107. Tai, R.H., Liu, C.Q., Maltese, A.V., and Fan, X. (2006). Planning early for careers in science. Science, 312 (5777), 1143-1144. Tarlowski, A. (2006). If it’s an animal it has axons: Experience and culture in preschool children’s reasoning about animates. Cognitive Development, 21 (3), 249-265. Tenenbaum, H.R., and Leaper, C. (2003). Parent-child conversations about science: Socialization of gender inequities. Developmental Psychology, 39 (1), 34-47. Tenenbaum, H., Snow, C., Roach, K., and Kurland, B. (2005). Talking and reading sci- ence: Longitudinal data on sex differences in mother-child conversations in low- income families. Journal of Applied Developmental Psychology, 26 (1), 1-19. Valle, A. (2007, April). Developing habitual ways of reasoning: Epistemological beliefs and formal bias in parent-child conversations. Poster presented at biennial meet- ing of the Society for Research in Child Development, Boston. Warren, B., Ballenger, C., Ogonowski, M., Rosebery, A.S., and Hudicourt-Barnes, J. (2001). Rethinking diversity in learning science: The logic of everyday sense- making. Journal of Research in Science Teaching, 38 (5), 529-552. Waxman, S., and Medin, D. (2007). Experience and cultural models matter: Placing firm limits on childhood anthropocentrism. Human Development, 50 (1), 23-30.

OCR for page 209
 Diversity and Equity Wells, N., and Evans, G. (2003). Nearby nature: A buffer of life stress among rural children. Environment and Behaviour, 35 (3), 311-330. Wenger, E. (1998). Communities of practice: Learning, meaning and identity. New York: Cambridge University Press. Wheaton, M., and Ash, D. (2008). Exploring middle school girls’ ideas about sci- ence at a bilingual marine science camp. Journal of Museum Education, 33 (2), 131-143. Williams, H. (1994). A critique of Hodson’s “In search of a rationale for multicultural science education.” Science Education, 78 (5), 515-519. Wong, E.D. (2002). To appreciate variation between scientists: A perspective for see- ing science’s vitality. Science Education, 86 (3), 386-400.