Similar questions surround supplies of natural gas. As Ernest Moniz pointed out, the United States increasingly has turned to natural gas for electricity production, partly because the capital costs of natural gas plants are lower than those for other energy sources and because natural gas produces lower levels of greenhouse gas emissions than do either petroleum or coal. But the increased use of natural gas has driven up its price. As a result, U.S. manufacturers that have depended on natural gas for direct energy conversion or as a feedstock are being driven overseas.


Rod Nelson summarized the conclusions of a major study of the world’s oil and natural gas supplies that was done by the National Petroleum Council (NPC), a federally chartered and privately funded advisory group that represents the oil and gas industries’ views to the federal government (NPC, 2007). In 2005, Secretary of Energy Samuel Bodman asked the NPC to study whether global oil and natural gas supplies can keep pace with growing world demand. Key questions were, What does the future hold for global oil and natural gas supply? Can incremental oil and natural gas supply be brought on line, on time, and at a reasonable price to meet future demand without jeopardizing economic growth? What oil and gas supply strategies and demand-side strategies does the NPC recommend that the United States pursue to ensure greater economic stability and prosperity?

The NPC study, which examined the period between now and the year 2030, involved a large number of study groups, subgroups, and subcommittees working under the direction of the Committee on Oil and Gas. More than 350 people participated in these groups—with 65 percent coming from outside the oil and gas industry—and more than 1,000 other individuals and groups provided input to the study. The Committee on Oil and Gas developed what it called six “hard truths” about oil and gas (NPC, 2007). The first is that:

Coal, oil, and natural gas will remain indispensable to meeting total projected energy demand growth. (p. 5)

As pointed out in Chapter 1, the IEA projects that global energy use will rise from about 450 quadrillion Btu in 2004 to about 700 quadrillion Btu in 2030 (IEA, 2007). The proportional contributions of energy sources do not seem to change much in the projections, Nelson observed, but the total use of energy grows dramatically (Figure 4.1). “The pie is getting bigger,” he said, “by 50 percent. So, in fact, biomass, solar, and wind are growing. In some cases, [they are] tripling or quadrupling in this timeframe.” Also, much of the future growth of energy use will occur in the developing world, which relies heavily

The National Academies of Sciences, Engineering, and Medicine
500 Fifth St. N.W. | Washington, D.C. 20001

Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement