PROTECTING INDIVIDUAL PRIVACY IN THE STRUGGLE AGAINST TERRORISTS

A Framework for Program Assessment

Committee on Technical and Privacy Dimensions of Information for Terrorism Prevention and Other National Goals

Committee on Law and Justice and Committee on National Statistics

Division on Behavioral and Social Sciences and Education

Computer Science and Telecommrunications Board

Division on Engineering and Physical Sciences

NATIONAL RESEARCH COUNCIL OF THE NATIONAL ACADEMIES

THE NATIONAL ACADEMIES PRESS

Washington, D.C.
www.nap.edu



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement



Below are the first 10 and last 10 pages of uncorrected machine-read text (when available) of this chapter, followed by the top 30 algorithmically extracted key phrases from the chapter as a whole.
Intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text on the opening pages of each chapter. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

Do not use for reproduction, copying, pasting, or reading; exclusively for search engines.

OCR for page R1
Protecting individual Privacy in the Struggle againSt terroriStS a Framework for Program assessment Committee on Technical and Privacy Dimensions of Information for Terrorism Prevention and Other National Goals Committee on Law and Justice and Committee on National Statistics Division on Behavioral and Social Sciences and Education Computer Science and Telecommunications Board Division on Engineering and Physical Sciences

OCR for page R1
THE NATIONAL ACADEMIES PRESS 500 Fifth Street, N.W. Washington, DC 20001 NOTICE: The project that is the subject of this report was approved by the Gov- erning Board of the National Research Council, whose members are drawn from the councils of the National Academy of Sciences, the National Academy of Engi- neering, and the Institute of Medicine. The members of the committee responsible for the report were chosen for their special competences and with regard for appropriate balance. Support for this project was provided by the Bureau of Transportation Statis- tics, with assistance from the National Science Foundation under sponsor award number SES-0112521; the Department of Homeland Security, with assistance from the National Science Foundation under sponsor award number SES-0411897; the National Center for Education Statistics, with assistance from the National Science Foundation under sponsor award number SBR-0453930; and the National Science Foundation under sponsor award numbers SRS-0632055 and IIS-0441216. Addi- tional funding was provided by the Presidents’ Circle Communications Initiative of the National Academies. Library of Congress Cataloging-in-Publication Data Protecting individual privacy in the struggle against terrorists : a framework for program assessment. p. cm. Includes bibliographical references. ISBN 978-0-309-12488-1 (pbk.) — ISBN 978-0-309-12489-8 (pdf) 1. Terrorism— United States—Prevention. 2. Surveillance detection—United States. 3. Privacy, Right of—United States. 4. Technological innovations—Law and legislation— United States. HV6432.P76 2008 363.325’163--dc22 2008033554 This report is available from Committee on Law and Justice or Computer Science and Telecommunications Board National Research Council 500 Fifth Street, N.W. Washington, DC 20001 Additional copies of this report are available from the National Academies Press, 500 Fifth Street, N.W., Lockbox 285, Washington, DC 20055; (800) 624-6242 or (202) 334-3313 (in the Washington metropolitan area); Internet, http://www.nap.edu. Copyright 2008 by the National Academy of Sciences. All rights reserved. Printed in the United States of America

OCR for page R1
The National Academy of Sciences is a private, nonprofit, self-perpetuating society of distinguished scholars engaged in scientific and engineering research, dedicated to the furtherance of science and technology and to their use for the general welfare. Upon the authority of the charter granted to it by the Congress in 1863, the Academy has a mandate that requires it to advise the federal govern- ment on scientific and technical matters. Dr. Ralph J. Cicerone is president of the National Academy of Sciences. The National Academy of Engineering was established in 1964, under the charter of the National Academy of Sciences, as a parallel organization of outstanding engineers. It is autonomous in its administration and in the selection of its mem- bers, sharing with the National Academy of Sciences the responsibility for advis- ing the federal government. The National Academy of Engineering also sponsors engineering programs aimed at meeting national needs, encourages education and research, and recognizes the superior achievements of engineers. Dr. Charles M. Vest is president of the National Academy of Engineering. The Institute of Medicine was established in 1970 by the National Academy of Sciences to secure the services of eminent members of appropriate professions in the examination of policy matters pertaining to the health of the public. The Institute acts under the responsibility given to the National Academy of Sciences by its congressional charter to be an adviser to the federal government and, upon its own initiative, to identify issues of medical care, research, and education. Dr. Harvey V. Fineberg is president of the Institute of Medicine. The National Research Council was organized by the National Academy of Sciences in 1916 to associate the broad community of science and technology with the Academy’s purposes of furthering knowledge and advising the federal government. Functioning in accordance with general policies determined by the Academy, the Council has become the principal operating agency of both the National Academy of Sciences and the National Academy of Engineering in pro- viding services to the government, the public, and the scientific and engineering communities. The Council is administered jointly by both Academies and the Institute of Medicine. Dr. Ralph J. Cicerone and Dr. Charles M. Vest are chair and vice chair, respectively, of the National Research Council. www.national-academies.org

OCR for page R1

OCR for page R1
COMMITTEE ON TECHNICAL AND PRIVACY DIMENSIONS OF INFORMATION FOR TERRORISM PREVENTION AND OTHER NATIONAL GOALS WILLIAM J. PERRY, Stanford University, Co-chair CHARLES M. VEST, National Academy of Engineering, Co-chair W. EARL BOEBERT, Sandia National Laboratories MICHAEL L. BRODIE, Verizon Communications DUNCAN A. BROWN, Johns Hopkins University FRED H. CATE, Indiana University RUTH A. DAVID, Analytic Services, Inc. RUTH M. DAVIS, Pymatuning Group, Inc. WILLIAM H. DuMOUCHEL, Lincoln Technologies, Inc. CYNTHIA DWORK, Microsoft Research STEPHEN E. FIENBERG, Carnegie Mellon University ROBERT J. HERMANN, Global Technology Partners, LLC R. GIL KERLIKOWSKE, Seattle Police Department ORIN S. KERR, George Washington University Law School ROBERT W. LEVENSON, University of California, Berkeley TOM M. MITCHELL, Carnegie Mellon University TARA O’TOOLE, University of Pittsburgh Medical Center DARYL PREGIBON, Google, Inc. LOUISE RICHARDSON, Harvard University BEN A. SHNEIDERMAN, University of Maryland DANIEL J. WEITZNER, Massachusetts Institute of Technology Staff BETTY M. CHEMERS, Committee on Law and Justice CAROL PETRIE, Committee on Law and Justice JULIE ANNE SCHUCK, Committee on Law and Justice MICHAEL L. COHEN, Committee on National Statistics HERBERT S. LIN, Computer Science and Telecommunications Board JANICE M. SABUDA, Computer Science and Telecommunications Board (through April 2008) 

OCR for page R1
COMMITTEE ON LAW AND JUSTICE (DBASSE) JAMES Q. WILSON, University of California, Los Angeles (Emeritus), Chair PHILIP J. COOK, Terry Sanford Institute of Public Policy, Duke University, Vice Chair DAVID H. BAYLEY, University of Albany, State University of New York RICHARD J. BONNIE, University of Virginia Law School MARTHA CRENSHAW, Wesleyan University ROBERT D. CRUTCHFIELD, University of Washington JOHN J. DIIULIO, JR., University of Pennsylvania STEVEN N. DURLAUF, University of Wisconsin, Madison JOHN A. FEREJOHN, Stanford University ARTHUR S. GOLDBERGER, University of Wisconsin, Madison BRUCE HOFFMAN, RAND Corporation ROBERT L. JOHNSON, New Jersey Medical School JOHN H. LAUB, University of Maryland TRACEY L. MEARES, University of Chicago TERRIE E. MOFFITT, University of London MARK H. MOORE, Harvard University RUTH PETERSON, Ohio State University RICHARD ROSENFELD, University of Missouri–St. Louis ROBERT J. SAMPSON, Department of Sociology, Harvard University JEREMY TRAVIS, Jay College of Criminal Justice, New York CHRISTY VISHER, The Urban Institute CAROL PETRIE, Director BETTY CHEMERS, Senior Program Officer LINDA DePUGH, Program Associate i

OCR for page R1
COMMITTEE ON NATIONAL STATISTICS (DBASSE) WILLIAM F. EDDY, Department of Statistics, Carnegie Mellon University, Chair KATHARINE ABRAHAM, University of Maryland ROBERT BELL, AT&T Research Laboratories WILLIAM DuMOUCHEL, Lincoln Technologies, Inc. JOHN HALTIWANGER, University of Maryland V. JOSEPH HOTZ, University of California, Los Angeles KAREN KAFADAR, University of Colorado, Denver, and Health Sciences Center DOUGLAS MASSEY, Princeton University VIJAY NAIR, University of Michigan, Ann Arbor JOSEPH NEWHOUSE, Harvard University SAMUEL H. PRESTON, University of Pennsylvania KENNETH PREWITT, Columbia University LOUISE RYAN, Harvard University NORA CATE SCHAEFFER, University of Wisconsin, Madison ALAN ZASLAVSKY, Harvard University Medical School CONSTANCE F. CITRO, Director ii

OCR for page R1
COMPUTER SCIENCE AND TELECOMMUNICATIONS BOARD (DEPS) JOSEPH F. TRAUB, Columbia University, Chair PRITHVIRAJ BANERJEE, Hewlett Packard Company FREDERICK R. CHANG, University of Texas, Austin WILLIAM DALLY, Stanford University MARK E. DEAN, IBM Almaden Research Center DEBORAH ESTRIN, University of California, Los Angeles KEVIN KAHN, Intel Corporation JAMES KAJIYA, Microsoft Corporation RANDY H. KATZ, University of California, Berkeley JOHN E. KELLY III, IBM SARA KIESLER, Carnegie Mellon University PETER LEE, Carnegie Mellon University TERESA H. MENG, Stanford University WILLIAM H. PRESS, University of Texas, Austin PRABHAKAR RAGHAVAN, Yahoo! Research ALFRED Z. SPECTOR, Google, Inc. ROBERT F. SPROULL, Sun Microsystems, Inc. PETER SZOLOVITS, Massachusetts Institute of Technology ANDREW J. VITERBI, Viterbi Group, LLC PETER WEINBERGER, Google, Inc. JON EISENBERG, Director KRISTEN R. BATCH, Associate Program Officer RENEE HAWKINS, Financial and Administrative Manager HERBERT S. LIN, Chief Scientist LYNETTE I. MILLETT, Senior Program Officer MORGAN R. MOTTO, Program Associate ERIC WHITAKER, Senior Program Assistant For more information on CSTB, see its Web site at http://www.cstb. org, write to CSTB, National Research Council, 500 Fifth Street, N.W., Washington, DC 20001, call (202) 334-2605, or e-mail the CSTB at cstb@ nas.edu. iii

OCR for page R1
Preface In late 2005, the National Research Council (NRC) convened the Com- mittee on Technical and Privacy Dimensions of Information for Terrorism Prevention and Other National Goals. Supported by the U.S. Department of Homeland Security and the National Science Foundation, the commit- tee was charged with addressing information needs of the government that arise in its deployment of various forms of technology for broad access to and analysis of data as it faces the challenges of terrorism pre- vention and threats to public health and safety. Specifically of interest was the nexus between terrorism prevention, technology, privacy, and other policy issues and the implications and issues involved in deploying data mining, information fusion, and behavioral surveillance technologies. The study sought to develop a conceptual framework that policy makers and the public can use to consider the utility, appropriateness, and empirical validity of data generated and analyzed by various forms of technology currently in use or planned in the near future. The committee notes that the development of this framework did not include the development of systems for preventing terrorism. By design and in response to the charge for the study, this report focuses on data mining and behavioral surveil- lance as the primary techniques of interest. The committee interpreted its charge as helping government policy makers to evaluate and make decisions about information-based pro- grams to fight terrorism or serve other important national goals, and it thus sought to provide a guide for government officials, policy makers, and technology developers as they continue to explore new surveillance ix

OCR for page R1
x PREFACE tools in the service of important national security goals. Chapter 1 scopes the issues involved and introduces key concepts that are explored in much greater depth in the appendixes. Chapter 2 outlines a framework for a systematic assessment of information-based programs being consid- ered or already in use for counterterrorist purposes (and other important national needs, such as law enforcement and public health) in terms of each program’s effectiveness and its consistency with U.S. laws and val- ues. Chapter 3 provides the committee’s conclusions and recommenda- tions. The appendixes elaborate extensively on the scientific and techni- cal foundations that underpin the committee’s work and the legal and organizational context in which information-based programs necessarily operate. The committee regards the appendixes as essential elements of the report. Note that although the committee heard from representatives from many government agencies, this report does not evaluate or critique any specific U.S. government program. Rather, it is intended to provide policy makers with a systematic framework for thinking about existing and future operational information-based programs, especially in a coun- terterrorist context. Nowhere is the need for this study and the framework it proposes more apparent than in the history of the Total Information Aware- ness (TIA) program. Indeed, the TIA program and the issues it raised loomed large in the background when this committee was appointed, and although the TIA program was terminated in September 2003, it is safe to say that the issues raised by this program have not been resolved in any fundamental sense. Moreover, many other data mining activities supported by the U.S. government continue to raise the same issues: the potential utility of large-scale databases containing personal information for counterterrorist and law enforcement purposes and the potential privacy impact of law enforcement and national security authorities using such databases. A brief history of the TIA program is contained in Appendix J. The committee consisted of 21 people with a broad range of exper- tise, including national security and counterterrorism, intelligence and counterintelligence, privacy law and information protection, organiza- tions and organizational structure, law enforcement, statistics, informa- tion technology, cognitive psychology, terrorism, database architecture, public health, artificial intelligence, databases, cryptography, machine learning and statistics, and information retrieval. From 2005 to 2007, the committee held six meetings, most of which were intended to enable it to explore a wide range of points of view. For example, briefings and other inputs were obtained from government officials at all levels, authorities on international law and practice relat-

OCR for page R1
xi PREFACE ing to policy, social scientists and philosophers concerned with collection of personal data, experts on privacy-enhancing technologies, business representatives concerned with the gathering and uses of personal data, and researchers who use personal data in their work. Several papers were commissioned and received, as well as a number of contributed white papers. Preparation of the report was undertaken on an unclassified basis. Although a number of classified programs of the U.S. government make use of data mining, the fundamental principles of data mining them- selves are not classified, and these principles apply to both classified and unclassified applications. Thus, at the level of analysis presented in this report, the fact that some of the U.S. government’s counterterrorist programs are classified does not materially affect the analysis provided here. In addition, the U.S. government operates a variety of classified programs intended to collect data that may be used for counterterrorist purposes. However, as collection programs, they are out of the scope of this report, and all that need be noted is that they produce data relevant to the counterterrorist mission and that data mining and information fusion technologies must process. This study could not have been undertaken without the support of the government project officers, Larry Willis, U.S. Department of Home- land Security, and Larry Brandt and Brian D. Humes, National Science Foundation, who recognize the complex issues involved in developing and using new technologies to respond to terrorism and other national efforts, such as law enforcement and public health, and the need to think through how this might best be done. Given the scope and breath of the study, the committee benefited greatly from the willingness of many individuals to share their perspec- tives and expertise. We are very grateful to the following individuals for their helpful briefings on technologies for data mining and detection of deception: Paul Ekman, University of California, San Francisco; Mark Frank, University of Buffalo; John Hollywood, RAND Corporation; David Jensen, University of Massachusetts; Jeff Jonas, IBM; David Scott, Rice University; John Woodward, RAND Corporation; and Thomas Zeffiro, Georgetown University. Useful insights on the use of these technologies in the private sector were provided by Scott Loftnesness, Glenbrook Part- ners, and Dan Schutzer, Financial Services Technical Consortium. William Winkler, Census Bureau, helped the committee understand the technolo- gies’ potential impact on federal statistical agencies. Background briefings on relevant privacy law and policy were pro- vided by Henry Greely, Stanford University; Barry Steinhardt, American Civil Liberties Union; Kim Taipale, Center for Advanced Studies in Sci- ence and Technology Policy; and Lee Tien, Electronic Frontier Founda-

OCR for page R1
Acknowledgment of Reviewers This report has been reviewed in draft form by individuals chosen for their diverse perspectives and technical expertise, in accordance with procedures approved by the National Research Council’s Report Review Committee. The purpose of this independent review is to provide candid and critical comments that will assist the institution in making its pub- lished report as sound as possible and to ensure that the report meets institutional standards for objectivity, evidence, and responsiveness to the study charge. The review comments and draft manuscript remain confidential to protect the integrity of the deliberative process. We wish to thank the following individuals for their review of this report: Steve M. Bellovin, Columbia University, R. Stephen Berry, University of Chicago, David L. Carter, Michigan State University, Richard F. Celeste, Colorado College, Hermann Habermann, Bureau of the U.S. Census (retired), David Jensen, University of Massachusetts, Amherst, Alan F. Karr, National Institute of Statistical Sciences, Diane Lambert, Google, Inc., Butler Lampson, Microsoft Corporation, Michael D. Larsen, Iowa State University, Lance Liebman, Columbia Law School, Patricia Quinlisk, State of Iowa, Jerome Reiter, Duke University, xi

OCR for page R1
x ACKNOWLEDGMENT OF REVIEWERS Andrew P. Sage, George Mason University, Paul Schwartz, University of California, Berkeley, Eugene Spafford, Purdue University, Robert D. Sparks, California Medical Association Foundation, William O. Studeman, Northrop Grumman Mission Systems, and Peter Weinberger, Google, Inc. Although the reviewers listed above have provided many construc- tive comments and suggestions, they were not asked to endorse the con- clusions or recommendations, nor did they see the final draft of the report before its release. The review of this report was overseen by William H. Press, University of Texas at Austin, and James G. March, Stanford Uni- versity. Appointed by the National Research Council, they were respon- sible for making certain that an independent examination of this report was carried out in accordance with institutional procedures and that all review comments were carefully considered. Responsibility for the final content of this report rests entirely with the authoring committee and the institution.

OCR for page R1

OCR for page R1
Contents EXECUTIVE SUMMARY 1 1 SCOPING THE ISSUE: TERRORISM, PRIVACY, AND TECHNOLOGY 7 1.1 The Nature of the Terrorist Threat to the United States, 7 1.2 Counterterrorism and Privacy as an American Value, 8 1.3 The Role of Information, 11 1.4 Organizational Models for Terrorism and the Intelligence Process, 15 1.5 Activities of the Intelligence Community and of Law Enforcement Agencies, 17 1.6 Technologies of Interest in This Report, 19 1.6.1 Data Mining, 20 1.6.2 Behavioral Surveillance, 24 1.7 The Social and Organizational Context, 26 1.8 Key Concepts, 27 1.8.1 The Meaning of Privacy, 27 1.8.2 Effectiveness, 29 1.8.3 Law and Consistency with Values, 30 1.8.4 False Positives, False Negatives, and Data Quality, 35 1.8.5 Oversight and Prevention of Abuse, 41 1.9 The Need for a Rational Assessment Process, 42 xii

OCR for page R1
xiii CONTENTS 2 A FRAMEWORK FOR EVALUATING INFORMATION-BASED PROGRAMS TO FIGHT TERRORISM OR SERVE OTHER IMPORTANT NATIONAL GOALS 44 2.1 The Need for a Framework for Evaluating Information-Based Programs, 44 2.2 Evaluating Effectiveness, 47 2.3 Evaluating Consistency with U.S. Law and Values, 52 2.3.1 Data, 53 2.3.2 Programs, 54 2.3.3 Administration and Oversight, 56 2.4 A Note for Policy Makers: Applying the Framework in the Future, 57 2.5 Summary of Framework Criteria, 59 2.5.1 For Evaluating Effectiveness, 59 2.5.2 For Evaluating Consistency with Laws and Values, 61 2.5.3 For Developing New Laws and Policies, 63 3 CONCLUSIONS AND RECOMMENDATIONS 67 3.1 Basic Premises, 67 3.2 Conclusions Regarding Privacy, 71 3.2.1 Protecting Privacy, 71 3.2.2 Distinctions Between Capability and Intent, 75 3.3 Conclusions Regarding the Assessment of Counterterrorism Programs, 75 3.4 Conclusions Regarding Data Mining, 76 3.4.1 Policy and Law Regarding Data Mining, 76 3.4.2 The Promise and Limitations of Data Mining, 77 3.5 Conclusions Regarding Deception Detection and Behavioral Surveillance, 82 3.6 Conclusions Regarding Statistical Agencies, 84 3.7 Recommendations, 86 3.7.1 Systematic Evaluation of Every Information- Based Counterterrorism Program, 86 3.7.2 Periodic Review of U.S. Law, Policy, and Procedures for Protection of Privacy, 95 APPENDIXES A Acronyms 105 B Terrorism and Terrorists 111 B.1 The Nature of Terrorism, 111

OCR for page R1
xix CONTENTS B.2 Some Tactics of Terrorism, 113 B.3 A Historical Perspective on Terrorism, 114 B.4 Explaining Terrorism, 114 B.5 Al Qaeda and the Terrorist Threat to the United States, 115 B.6 Terrorists and Their Supporting Technologies, 118 B.7 Looking to the Future, 119 C Information and Information Technology 120 C.1 The Information Life Cycle, 120 C.1.1 Information Collection, 120 C.1.2 Information Correction and Cleaning, 121 C.1.3 Information Storage, 122 C.1.4 Information Analysis and Use, 122 C.1.5 Information Sharing, 122 C.1.6 Information Monitoring, 123 C.1.7 Information Retention, 124 C.1.8 Issues Related to Data Linkage, 126 C.1.9 Connecting the Information Life Cycle to the Framework, 126 C.2 The Underlying Communications and Information Technology, 128 C.2.1 Communications Technology, 128 C.2.2 Information Technology, 129 C.2.3 Managing Information Technology Systems and Programs, 131 D The Life Cycle of Technology, Systems, and Programs 133 E Hypothetical and Illustrative Applications of the Framework to Various Scenarios 137 E.1 Airport Security, 137 E.1.1 The Threat, 137 E.1.2 A Possible Technological Approach to Addressing the Threat, 138 E.1.3 Possible Privacy Impacts, 139 E.1.4 Applying the Framework, 140 E.2 Syndromic Surveillance, 141 E.2.1 The Threat, 141 E.2.2 A Possible Technological Approach to Addressing the Threat, 141 E.2.3 Possible Privacy Impacts, 142 E.2.4 Applying the Framework, 144

OCR for page R1
xx CONTENTS F Privacy-Related Law and Regulation: The State of the Law and Outstanding Issues 150 F.1 The Fourth Amendment, 150 F.1.1 Basic Concepts, 150 F.1.2 Machine-Aided Searches, 151 F.1.3 Searches and Surveillance for National Security and Intelligence Purposes That Involve U.S. Persons Connected to a Foreign Power or That Are Conducted Wholly Outside the United States, 152 F.1.4 The Miller-Smith Exclusion of Third-Party Records, 153 F.2 The Electronic Communications Privacy Act, 154 F.3 The Foreign Intelligence Surveillance Act, 155 F.4 The Privacy Act, 156 F.5 Executive Order 12333 (U.S. Intelligence Activities), 159 F.6 The Adequacy of Today’s Electronic Surveillance Law, 160 F.7 Further Reflections from the Technology and Privacy Advisory Committee Report, 164 G The Jurisprudence of Privacy Law and the Need for Independent Oversight 166 G.1 Substantive Privacy Rules, 167 G.1.1 Privacy Challenges Posed by Advanced Surveillance and Data Mining, 167 G.1.2 Evolution of Regulation of New Technologies, 172 G.1.3 New Surveillance Techniques That Raise Privacy Questions Unaddressed by Constitutional or Statutory Privacy Rules, 175 G.1.4 New Approaches to Privacy Protection: Collection Limitation Versus Use Limitation, 175 G.2 Procedural Privacy Rules and the Need for Oversight, 176 G.2.1 Oversight Mechanisms of the U.S. Government, 177 G.2.2 A Framework for Independent Oversight, 179 G.2.3 Applying Independent Oversight for Government Agencies to Protect Privacy, 182 G.2.4 Collateral Benefits of Oversight, 184 H Data Mining and Information Fusion 185 H.1 The Need for Automated Techniques for Data Analysis, 185 H.2 Preparing the Data to Be Mined, 189

OCR for page R1
xxi CONTENTS H.3 Subject-Based Data Mining as an Extension of Standard Investigative Techniques, 192 H.4 Pattern-Based Data Mining Techniques as Illustrations of More Sophisticated Approaches, 193 H.5 The Evaluation of Data Mining Techniques, 198 H.5.1 The Essential Difficulties of Evaluation, 199 H.5.2 Evaluation Considerations, 200 H.6 Expert Judgment and Its Role in Data Mining, 205 H.7 Issues Concerning the Data Available for Use with Data Mining and the Implications for Counterterrorism and Privacy, 207 H.8 Data Mining Components in an Information-Based Counterterrorist System, 208 H.9 Information Fusion, 209 H.10 An Operational Note, 211 H.11 Assessment of Data Mining for Counterterrorism, 213 I Illustrative Government Data Mining Programs and Activity 218 I.1 Total/Terrorism Information Awareness (TIA), 219 I.2 Computer-Assisted Passenger Prescreening System II (CAPPS II) and Secure Flight, 219 I.3 Multistate Anti-Terrorism Information Exchange (MATRIX), 222 I.4 Able Danger, 224 I.5 Analysis, Dissemination, Visualization, Insight, and Semantic Enhancement (ADVISE), 226 I.6 Automated Targeting System (ATS), 228 I.7 The Electronic Surveillance Program, 229 I.8 Novel Intelligence from Massive Data (NIMD) Program, 230 I.9 Enterprise Data Warehouse (EDW), 231 I.10 Law Enforcement Analytic Data System (NETLEADS), 232 I.11 ICE Pattern Analysis and Information Collection System (ICEPIC), 232 I.12 Intelligence and Information Fusion (I2F), 233 I.13 Fraud Detection and National Security Data System (FDNS-DS), 233 I.14 National Immigration Information Sharing Office (NIISO), 234 I.15 Financial Crimes Enforcement Network (FinCEN) and BSA Direct, 234 I.16 Department of Justice Programs Involving Pattern- Based Data Mining, 235

OCR for page R1
xxii CONTENTS J The Total/Terrorist Information Awareness Program 239 J.1 A Brief History, 239 J.2 A Technical Perspective on TIA’s Approach to Protecting Privacy, 243 J.3 Assessment, 247 K Behavioral-Surveillance Techniques and Technologies 250 K.1 The Rationale for Behavioral Surveillance, 250 K.2 Major Behavioral-Detection Methods, 251 K.2.1 Facial Expression, 252 K.2.2 Vocalization, 254 K.2.3 Other Muscle Activity, 255 K.2.4 Autonomic Nervous System, 255 K.2.5 Central Nervous System, 257 K.3 Assessing Behavioral-Surveillance Techniques, 258 K.4 Behavioral and Data Mining Methods: Similarities and Differences, 259 L The Science and Technology of Privacy Protection 263 L.1 The Cybersecurity Dimension of Privacy, 263 L.2 Privacy-Preserving Data Analysis, 266 L.2.1 Basic Concepts, 266 L.2.2 Some Simple Ideas That Do Not Work in Practice, 268 L.2.3 Private Computation, 269 L.2.4 The Need for Rigor, 270 L.2.5 The Effect of Data Errors on Privacy, 273 L.3 Enhancing Privacy Through Information-System Design, 275 L.3.1 Data and Privacy, 275 L.3.2 Information Systems and Privacy, 276 L.4 Statistical Agency Data and Approaches, 277 L.4.1 Confidentiality Protection and Public Data Release, 278 L.4.2 Record Linkage and Public Use Files, 279 M Public Opinion Data on U.S. Attitudes Toward Government Counterterrorism Efforts 281 M.1 Introduction, 281 M.2 Data and Methodology, 284 M.3 Organization of This Appendix, 287 M.4 General Privacy Attitudes, 288 M.5 Government Surveillance, 291

OCR for page R1
xxiii CONTENTS M.5.1 Trends in Attitudes Toward Surveillance Measures, 291 M.5.2 Communications Monitoring, 294 M.5.3 Monitoring of Financial Transactions, 300 M.5.4 Video Surveillance, 301 M.5.5 Travel Security, 302 M.5.6 Biometric Identification Technologies, 303 M.5.7 Government Use of Databases and Data Mining, 304 M.5.8 Public Health Uses of Medical Information, 306 M.6 The Balance Between Civil Liberties and Terrorism Investigation, 310 M.6.1 Civil Liberties Versus Terrorism Prevention, 311 M.6.2 Privacy Costs of Terrorism Investigation, 315 M.6.3 Personal Willingness to Sacrifice Freedoms, 316 M.6.4 Concerns About Uses of Expanded Powers, 317 M.7 Conclusions, 319 M.8 Annex, 322 M.8.1 Details of Cited Surveys, 322 M.8.2 Research of Organization/Sponsor Name Abbreviations, 322 M.8.3 List of Surveys, 324 M.8.4 References, 334 N Committee and Staff Biographical Information 335 O Meeting Participants and Other Contributors

OCR for page R1