National Academies Press: OpenBook
« Previous: Appendix E: Acronyms
Suggested Citation:"Appendix F: The Constellation Program." National Research Council. 2008. A Constrained Space Exploration Technology Program: A Review of NASA's Exploration Technology Development Program. Washington, DC: The National Academies Press. doi: 10.17226/12471.
×

Appendix F
The Constellation Program

NASA’s Constellation Program is currently composed of the four development programs described below: Orion, Altair, Ares I, and Ares V.

  • Orion—According to NASA, “Orion will be capable of carrying crew and cargo to the space station. It will be able to rendezvous with a lunar landing module and an Earth departure stage in low-Earth orbit to carry crews to the moon and, one day, to Mars-bound vehicles assembled in low-Earth orbit. Orion will be the Earth entry vehicle for lunar and Mars returns. Orion’s design will borrow its shape from the capsules of the past, but takes advantage of 21st century technology in computers, electronics, life support, propulsion and heat protection systems.”1

  • Altair—According to NASA, “Altair will be capable of landing four astronauts on the moon, providing life support and a base for weeklong initial surface exploration missions, and returning the crew to the Orion spacecraft that will bring them home to Earth. Altair will launch aboard an Ares V rocket into low Earth orbit, where it will rendezvous with the Orion crew vehicle.”2

  • Ares I—According to NASA, “Future astronauts will ride to orbit on Ares I, which uses a single five-segment solid rocket booster, a derivative of the space shuttle’s solid rocket booster, for the first stage. A liquid oxygen/liquid hydrogen J-2X engine derived from the J-2 engine used on Apollo’s second stage will power the crew exploration vehicle’s second stage. The Ares I can lift more than 55,000 pounds to low Earth orbit.”3

  • Ares V—According to NASA, “Ares V, a heavy lift launch vehicle, will use five RS-68 liquid oxygen/liquid hydrogen engines mounted below a larger version of the space shuttle’s external tank, and two five-segment solid propellant rocket boosters for the first stage. The upper stage will use the same J-2X engine as the Ares I. The Ares V can lift more than 286,000 pounds to low Earth orbit and stands approximately 360 feet tall. This versatile system will be used to carry cargo and the components into orbit needed to go to the moon and later to Mars.”4

Suggested Citation:"Appendix F: The Constellation Program." National Research Council. 2008. A Constrained Space Exploration Technology Program: A Review of NASA's Exploration Technology Development Program. Washington, DC: The National Academies Press. doi: 10.17226/12471.
×
Page 86
Next: Appendix G: Mapping of Bioastronautics Roadmap Risks to Relevant Projects of the Exploration Technology Development Program »
A Constrained Space Exploration Technology Program: A Review of NASA's Exploration Technology Development Program Get This Book
×
Buy Paperback | $50.00 Buy Ebook | $40.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

In January 2004, President George W. Bush announced the Vision for Space Exploration (VSE), which instructed NASA to "Extend human presence across the solar system, starting with a human return to the Moon by the year 2020, in preparation for human exploration of Mars and other destinations," among other objectives. As acknowledged in the VSE, significant technology development will be necessary to accomplish the goals it articulates. NASA's Exploration Technology Development Program (ETDP) is designed to support, develop, and ultimately provide the necessary technologies to meet the goals of the VSE. This book, a review of the ETDP, is broadly supportive of the intent and goals of the VSE, and finds the ETDP is making progress towards the stated goals of technology development. However, the ETDP is operating within significant constraints which limit its ability to successfully accomplish those goals-the still dynamic nature of the Constellation Program requirements, the constraints imposed by a limited budget, the aggressive time scale of early technology deliverables, and the desire to fully employ the NASA workforce.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!