National Academies Press: OpenBook

In the Light of Evolution: Volume II: Biodiversity and Extinction (2008)

Chapter: 17 Further Engaging the Public on Biodiversity Issues--PETER J. BRYANT

« Previous: 16 Engaging the Public in Biodiversity Issues--MICHAEL J. NOVACEK
Suggested Citation:"17 Further Engaging the Public on Biodiversity Issues--PETER J. BRYANT." National Academy of Sciences. 2008. In the Light of Evolution: Volume II: Biodiversity and Extinction. Washington, DC: The National Academies Press. doi: 10.17226/12501.
×
Page 317
Suggested Citation:"17 Further Engaging the Public on Biodiversity Issues--PETER J. BRYANT." National Academy of Sciences. 2008. In the Light of Evolution: Volume II: Biodiversity and Extinction. Washington, DC: The National Academies Press. doi: 10.17226/12501.
×
Page 318
Suggested Citation:"17 Further Engaging the Public on Biodiversity Issues--PETER J. BRYANT." National Academy of Sciences. 2008. In the Light of Evolution: Volume II: Biodiversity and Extinction. Washington, DC: The National Academies Press. doi: 10.17226/12501.
×
Page 319
Suggested Citation:"17 Further Engaging the Public on Biodiversity Issues--PETER J. BRYANT." National Academy of Sciences. 2008. In the Light of Evolution: Volume II: Biodiversity and Extinction. Washington, DC: The National Academies Press. doi: 10.17226/12501.
×
Page 320
Suggested Citation:"17 Further Engaging the Public on Biodiversity Issues--PETER J. BRYANT." National Academy of Sciences. 2008. In the Light of Evolution: Volume II: Biodiversity and Extinction. Washington, DC: The National Academies Press. doi: 10.17226/12501.
×
Page 321
Suggested Citation:"17 Further Engaging the Public on Biodiversity Issues--PETER J. BRYANT." National Academy of Sciences. 2008. In the Light of Evolution: Volume II: Biodiversity and Extinction. Washington, DC: The National Academies Press. doi: 10.17226/12501.
×
Page 322
Suggested Citation:"17 Further Engaging the Public on Biodiversity Issues--PETER J. BRYANT." National Academy of Sciences. 2008. In the Light of Evolution: Volume II: Biodiversity and Extinction. Washington, DC: The National Academies Press. doi: 10.17226/12501.
×
Page 323
Suggested Citation:"17 Further Engaging the Public on Biodiversity Issues--PETER J. BRYANT." National Academy of Sciences. 2008. In the Light of Evolution: Volume II: Biodiversity and Extinction. Washington, DC: The National Academies Press. doi: 10.17226/12501.
×
Page 324
Suggested Citation:"17 Further Engaging the Public on Biodiversity Issues--PETER J. BRYANT." National Academy of Sciences. 2008. In the Light of Evolution: Volume II: Biodiversity and Extinction. Washington, DC: The National Academies Press. doi: 10.17226/12501.
×
Page 325
Suggested Citation:"17 Further Engaging the Public on Biodiversity Issues--PETER J. BRYANT." National Academy of Sciences. 2008. In the Light of Evolution: Volume II: Biodiversity and Extinction. Washington, DC: The National Academies Press. doi: 10.17226/12501.
×
Page 326
Suggested Citation:"17 Further Engaging the Public on Biodiversity Issues--PETER J. BRYANT." National Academy of Sciences. 2008. In the Light of Evolution: Volume II: Biodiversity and Extinction. Washington, DC: The National Academies Press. doi: 10.17226/12501.
×
Page 327
Suggested Citation:"17 Further Engaging the Public on Biodiversity Issues--PETER J. BRYANT." National Academy of Sciences. 2008. In the Light of Evolution: Volume II: Biodiversity and Extinction. Washington, DC: The National Academies Press. doi: 10.17226/12501.
×
Page 328

Below is the uncorrected machine-read text of this chapter, intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text of each book. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

17 Further Engaging the Public on Biodiversity Issues PETER J. BRYANT Scientists can do only a small fraction of the monitoring that is necessary to document changes in the populations and distribu- tions of wild animals and plants, so the collection of such data often depends on organized efforts by members of the public with appropriate expertise. Regular butterfly, bird, and mammal counts as well as more comprehensive species inventories such as BioBlitz have been increasing in popularity and in reliability. The use of this kind of biodiversity data has been greatly facili- tated by the ready availability of digital cameras and the huge opportunities for image sharing made possible by Internet access. Online communities of amateur naturalists are forming, and indi- viduals are helping each other to find and to correctly identify wild species without collecting or destroying them. They are thereby contributing increasingly to our knowledge of the natural world and especially to changes brought about by human domination of the planet, including not only disappearances of native species, but invasion by exotic species and changes in distribution related to climate change. Unfortunately, these efforts are confirming that species of plants and animals are disappearing at rates that have alarmed even the most optimistic of scientists. Members of the public are also helping to monitor migration patterns; to rescue, rehabilitate, and release stranded, injured, or malnourished ani- mals; and to restore damaged habitats including work to collect seed and propagate appropriate local varieties of plants. All of School of Biological Sciences, University of California, Irvine 92697. 317

318  /  Peter J. Bryant these activities increase the level of awareness and thereby the level of concern felt by millions of citizens over human damage to the planet. S cientists are finding extremely disturbing trends in many measures of the health of our environment, and they are continuing to docu- ment the ominous decline of many species and ecosystems. Some of the declines are enigmatic, some of them are beginning to be understood, and in some cases the causes are clear and are a result of human overex- ploitation, land conversion, or environmental contamination. Although it may be depressing to see so many signs of loss, it behooves us to document and analyze these changes so that we can start to understand the real costs of human domination of the planet. Unfortunately scientists can do only a small fraction of the monitor- ing that these changes call for. Even if environmental science were well funded, we would still be faced with the problem that the data points (individual organisms or populations of animals, plants, or microbes) are often widely scattered over large areas, and data collection by remote sensing is now possible only for a limited set of the organisms of interest. The seasonality of distribution patterns is also of interest and compounds the problem of comprehensive data collection. The public can be a tremendous resource for scientists interested in monitoring nature. There are plenty of skilled and observant people with knowledge of particular taxa or geographic areas, who are often passion- ate about these interests and are delighted to discover that their work may be useful. Many of them have independently developed knowledge bases and are collecting photographs of species, life cycles, behaviors, and the place of animals and plants in the wild. Others have become organized to carry out regular counts of birds or butterflies so that interesting trends may be detectable. Still more people have joined or started organizations for which one of the goals is to document and monitor certain taxa or geographic areas. Although a global study of the engagement of the public in biodiver- sity issues would be of great interest, it has yet to be done, so some of my comments will be restricted to local trends in public engagement. CALIFORNIA AND ORANGE COUNTY Orange County is the smallest county in Southern California, with a total land area of 789 square miles, but its population of over 3 million people makes it the second most populous county in the state, with the highest population density (3,822 persons/square mile in 2004) outside

Further Engaging the Public on Biodiversity Issues  /  319 of San Francisco County. Yet, as part of the California Floristic Province, one of the world’s biodiversity hotspots, it retains an impressive flora and fauna. The southern part of the county still includes large, relatively undeveloped sections of coastal sage scrub habitat that have been recog- nized in the Orange County Natural Communities Conservation Planning (NCCP) process (Speegle, 2007). Orange County contains significant populations of rare and endan- gered species of plants, birds, and mammals. It is home to over half of the remaining population of coastal cactus wrens (Campylorhynchus brunneicapillus; http://www.prbo.org/calpif/htmldocs/species/scrub/ cactus_wren.html), and to over 15% of the remaining population of the California gnatcatcher (Polioptila californica; http://www.prbo.org/calpif/ htmldocs/species/scrub/california_gnatcatcher.html), the country’s larg- est contiguous population of this threatened species. In view of the huge rate of destruction of natural habitats in the county, we are probably los- ing countless species of less conspicuous animals and plants before they are even documented. Fortunately there is a remarkable level of public engagement on local biodiversity issues, and hopefully this engagement may help to prevent or slow the losses of biodiversity. One of the most inspirational examples of local activity for biodiver- sity conservation is the work of Frank and Fran Robinson, who worked tirelessly from 1963 to 1973 to save Upper Newport Bay (http://www. newportbay.org/bayintro.htm) from development. The bay is now a 752- acre State Ecological Reserve associated with a 140-acre County Nature Preserve. It is home to thousands of resident and migratory birds as well as multiple other forms of marine and terrestrial wildlife. It will be men- tioned several times in this chapter. Another hugely successful local effort, involving dedicated efforts by James Dilley, Elisabeth Brown, and oth- ers in the Laguna Greenbelt organization (http://www.lagunagreenbelt. org/History.html), led to the establishment of extensive protected areas in Laguna Canyon, now consolidated as the 6400-acre Laguna Coast Wilder- ness Park (http://www.lagunacanyon.org/index.html). Identifying Species Collecting data on any group of organisms requires, of course, accu- rate identification, ideally to species or even subspecies. Traditional field guides and web-based identification guides are becoming sophisticated and accessible, but most of us tend to develop expertise in a specific group of organisms. Sharing this expertise is a great way to engage the public in more data collection. Arthropods (insects, spiders, crustaceans, millipedes, and centipedes) make up more than three-quarters of the species on Earth. However,

320  /  Peter J. Bryant the general public is not generally well informed about arthropods, and there are many misunderstandings and irrational fears regarding these animals. But as with most other animals and plants, to know them is to love them. A close look at a fly, a bug, or a roach can completely change one’s feelings from aversion to fascination. With spiders, for some reason, aversions often run strong, but again a close look at the animal can often overcome these feelings. A major factor in increased awareness and interest in arthropods has been the ready availability of digital cameras and especially the huge increase in opportunity for image sharing made possible by digital pho- tography and Internet access. Web sites have facilitated image and knowl- edge sharing, and greatly stimulated efforts by amateur photographers to contribute to knowledge about biodiversity. Increased efforts to compile data on species distribution and migration are also adding to the popular- ity and utility of the combination of digital photography and web-based communication. New web-based interactive geo-informatics programs, such as Google Earth, provide exciting opportunities for cooperative data collection by scientists, and they also make it possible to involve the public in biodiversity data collection. This has the dual benefit of stimulating the public to understand the environment, and of producing important data that would be impossible to obtain by a typical scientific research group operating in isolation. One of the more creative and successful uses of the Internet for engag- ing the public is the Bugguide web site, hosted by the Entomology Depart- ment at Iowa State University (Bartlett, 2007). In early 1999, Troy Bartlett of Roswell, GA, began sharing his insect photographs on the Internet. Noticing an unmet need, he decided to create an online community where both amateur and professional entomologists could not only view images, but also contribute their own images in order to get help with identifica- tion. The images are used to create guide pages that can subsequently be used to help others to learn and identify insects, spiders, and other related creatures in North America. Volunteer section editors contribute their expertise to review identifications and to move guide pages into the proper taxonomic positions. In many cases the photographs are good enough for identification to species, but there are still situations calling for microscopic examination of a specimen and even dissection of the genita- lia by an expert. Images of such problematic creatures are still posted, but with more tentative identifications. Troy’s Bugguide web site became such a success that Iowa State University was brought in to manage it. As of December 2007 it had 15,762 contributors, 75 editors, and 124,113 images on 8,624 species pages grouped into 667 families. It has also become much more than an identification guide, since it helps enthusiasts to compile and share information on life histories and geographic distribution of species.

Further Engaging the Public on Biodiversity Issues  /  321 It has the potential to make increasingly important contributions to our knowledge of biodiversity, to increase the sharing of this knowledge, and eventually to track long-term changes in biodiversity. The project could also be expanded to other taxa. An alternative approach to engaging and educating the public about local biodiversity is to compile web sites showing only the species likely to be seen locally. By cutting down on the number of choices, this makes it much easier for amateurs to learn identification. With some other local photographers, Ron Hemberger, Hartmut Wisch, and I have compiled a web site on local (Orange County) arthropods that contains over 760 spe- cies pages and is one of the most complete displays of local arthropods to be found anywhere (Bryant, 2007a). I have also compiled a web site on the local intertidal animals, based on my own photographs and containing over 90 species pages (Bryant, 2007a). These projects have taught me and the other photographers a great deal about local biodiversity, and the web sites are used as field guides for untold numbers of the public who are curious or even worried about some of the creatures they encounter. Orange County Birding (http://fog.ccsf.cc.ca.us/~jmorlan/ora.htm) provides a forum for reporting and discussing bird sightings in Orange County. Over 450 bird species have been recorded in the county. A special forum for reporting vagrants is the Orange County Rare Bird Alert (http:// www.virtualbirder.com/vbirder/realbirds/rbas/CA.html#CAOC); 24 rare species were recorded during one of the most recent weeks. Monitoring Populations Some of the more conspicuous plants and animals are observed and counted annually by coordinated efforts across wide geographic areas. The July 4th butterfly counts in North America, organized by the North Ameri- can Butterfly Association (http://www.naba.org/counts.html), are a good example. These are usually carried out by small teams of volunteers, each led by at least one expert in the local butterfly fauna. Each team designs a transect within a 15-mile diameter count circle and counts and identifies all butterflies observed from the transect, usually once per year on or about July 4th. In 2006, 483 counts were held in the U.S., Canada, and Mexico. The data are published annually and provide a wealth of information on population trends and geographical distribution of the species. Species diversity and abundance vary, of course, with location. The all-time record for most species on a California count was 78 species in Yreka, California, in 1991. Some species have population booms in some years and busts in others, making long-term trends difficult to document. Our local counts (Upper Newport Bay, Orange County, California) have been taking place since 1987 and are unfortunately showing a dis-

322  /  Peter J. Bryant turbing decline in both numbers of individuals (4–500 in the late 1980s and early 1990s, but 1–300 since 1994) and number of species (over 20 in the late 1980s and early 1990s but 4 or less since 2004). Butterfly counts in Northern California have also shown a serious decline. In 2006, Dr. Arthur Shapiro at UC Davis reported fewer butterflies in Northern California, particularly in the Central Valley, than at any time since he started counting them 35 years ago. At most of his study sites, he found only about half, or less than half, the number of species present in an average year. Near Vacaville in 2005, he found 378 individuals of 21 species, but in 2006 there were 43 individuals of 10 species (Kay, 2006). Headlines like “Where have all the butterflies gone” are showing up in newspapers and journals in many other countries, including India (Khanna, 2005), Japan (Inoue, 2005), Canada (Science Daily, 2007), Aus- tralia (http://www.samuseum.sa.gov.au/butterflies/butterfly.htm), New Zealand (New Zealand Herald, 2007) and Britain (Butterfly Conservation, 2007a). The reasons for butterfly decline are usually not known, although pesticide use, genetically modified crops, climate change, habitat destruc- tion, drought, and excessive collecting for trade are among the known causes or suspects. In Britain, with a long tradition of public engagement in wildlife observation, over 10,000 volunteer recorders participate in assessing the distribution and abundance of butterflies over a network of over 750 geographic sites (http://www.butterfly-conservation.org/text/36/ recording_monitoring.html), using a combination of weekly transect counts and single-visit timed counts. The comprehensive 2007 report (Fox et al., 2007) shows that many of Britain’s butterflies are, unfortunately, in a rapid and alarming decline. The Large Blue became extinct in 1979 and has been successfully reintroduced, but 76% of the 54 remaining resident species have declined. A related moth monitoring program including a National Moth Night assesses the distribution of moths throughout the country. Moths are much more diverse than butterflies, with about 2,500 species, and are not as well known but their numbers have also dropped, by about a third since 1968 (Butterfly Conservation, 2007b). Some moth species are seriously endangered and a few are thought to have gone extinct. British insect species that have disappeared in the past 50 years include 88 beetles, 56 butterflies and moths, 20 bees, 17 flies, 14 bugs and hoppers, and 12 wasps (McCarthy, 2006) making a total of over 200 extinc- tions. Three bird species and 20 plants have also been lost. Sightings of butterflies by hundreds of volunteers are contributing to our understanding of climate change. This was seen most clearly in Brit- ain, where April 2007 was the warmest April on record ending the hottest 12 months ever recorded. Associated with this climate change, 11 species of butterflies made their earliest recorded appearances and of 59 resident

Further Engaging the Public on Biodiversity Issues  /  323 and regular migrant species, at least 36 emerged earlier than they would have done 10 years ago (McCarthy, 2007). In the U.S., the Audubon Society’s Christmas Bird Count is the world’s longest-running uninterrupted bird census, engaging hundreds of vol- unteers every year. The complementary Breeding Bird Survey is a stan- dardized count of birds along roadsides from May to July, carried out by volunteers and organized by the U.S. Geological Survey. Data from these two efforts were recently analyzed to discern 40-year population trends of all common North American bird species, and unfortunately the analysis revealed alarming declines of many of our most common birds. Some species declined by 80 percent, and 20 species lost at least half their populations over the study period. For some declining bird species, some of the contributing factors can be identified. For example, meadowlarks favor farmland habitat, and this has been declining with changes in land use and the intensification of farming. Greater scaup and other tundra-breeding birds are suffering from loss of their permafrost breeding habitat and the arrival of predators from more temperate areas in association with global warming. Forest- dwelling birds, notably the boreal chickadee, are losing habitat due to various forms of deforestation. Upper Newport Bay’s Back Bay Science Center (Mallett, 2006) has developed a regular Marine Life Inventory program, carried out each month with the help of many volunteers. Otter trawls, plankton tows, beach seines, and mud grabs are used to collect both vertebrates and invertebrates from the bay, and the catches are brought ashore for species identification, measuring, and counting. Captain Dave’s Dolphin Safari (http://www.dolphinsafari.com/), based in Dana Point, Orange County, California, has been making use of volunteer dolphin and whale spotters on short cruises off the coast. Dur- ing the 2007 season, large pods of bottlenose dolphins, common dolphins, Risso’s dolphins, as well as surprisingly large numbers (up to 20 during a half-day trip) of blue whales were documented. Monitoring Distributions In addition to early appearances, several species are extending their distributions northward, according to data collected largely by volunteers. In Britain, the Essex skipper, the comma, brown argus, orange-tip, pea- cock, speckled wood, and ringlet are all expanding their ranges northward, consistent with the predicted responses to climate change (Briggs, 2006). In Orange County, California, the giant swallowtail first arrived in 1997 and has now been recorded from several cities in the county. The brown widow spider first appeared in 2005 and has been spreading to other cities

324  /  Peter J. Bryant (Vincent, personal communication, 2007). One of our local insect photog- raphers, Ron Hemberger, recently documented the first California record of a stripe-eyed hoverfly (Eristalinus taeniops), originally from Africa but previously recorded from Florida (Hemberger, 2006). The new arrivals in Southern California also include well-documented pest species including Mediterranean fruit fly, Mexican fruit fly, oriental fruit fly, Japanese beetle, gypsy moth, ash whitefly, Eugenia psyllid, euca- lyptus borer, Mexican scorpion, “killer bees,” and red imported fire ant, the latter being one of the “100 of the Worst” listed on the Global Invasive Species Database. Black skimmers were seen at Upper Newport Bay first in 1987, then built up their population during successive seasons, reaching a total of over 500 in the late 1990s. They are now a regular and spectacular sight in the bay. Another new arrival, first seen in coastal Orange County during the last five years, is the bobcat (Flynn, 2006). Its small population is being monitored extensively by the U.S. Geological Survey, using motion- sensing cameras, radiotelemetry, and recording GPS collars attached to the cats. But visual sightings and photographs from the public have also made an important contribution to our knowledge of the distribution and movements of these animals, especially in and near urban areas. These sightings and photographs are being used to monitor tagged animals, to match pelt patterns to identify individual bobcats, and the public has also been engaged in collecting information on road kills and their locations. This helps the professionals to learn more about the genetic structure of the bobcat populations and to start to better understand the impacts of habitat fragmentation and land-use changes on the populations. Knowing the locations of the road kills (16 in the San Joaquin Hills, Orange County, from September 2005 through April 2007) also helps to identify hotspots where animals are particularly vulnerable so that recommendations can be made for improved connectivity (Lyren et al., 2006). Monitoring Migration Although designed primarily for K-12 students, Journey North (http:// www.learner.org/jnorth/) is another Internet-based data collection proj- ect, focused on migratory species in North America. Students and the public participate in tracking the migration patterns of monarch butter- flies, robins, hummingbirds, whooping cranes, gray whales, bald eagles, and birds and mammals. Sightings are automatically added to databases, which can be observed as animated maps on line. For whooping cranes, students can watch chicks grow and then learn migration as humans lead the way using ultra-light airplanes in Operation Migration (http://www.

Further Engaging the Public on Biodiversity Issues  /  325 operationmigration.org/). With bald eagles, students can collaborate with a biologist using satellite telemetry to track bald eagles to their nests in Canada. Regular reports are posted so that participants can see how their observations are used. One of the best known and watched migratory species on Journey North is the monarch butterfly. However, both eastern and western popu- lations of monarchs in North America appear to be in serious decline. For the eastern population, the number reaching their forested wintering grounds in Mexico in 2005 was the lowest since record keeping began about 30 years ago. For the western population, butterflies roosting at Pismo Beach, California, have had population fluctuations in the past, but there has been a steady decline from 115,000 in 1998–1999 to 22,000 in 2006–2007 (Barlow, 2008). The annual migration of the California gray whale off the coast of California has been intensively monitored for 24 consecutive seasons by volunteers from the Los Angeles Chapter of the American Cetacean Society (Schulman-Janiger, 2007). Both southbound (December–February) and northbound (February–May) migrants are monitored from the Point Vicente Interpretive Center, 125 feet above sea level on the Palos Verdes Peninsula (Schulman-Janiger, 2007). In the 2006–2007 season, the census station operated for 166 days, averaging over 12 hours per day. Seventy- four volunteers contributed 7,697 effort hours on the program. Since many of the whales use offshore migratory routes, the counts cannot be used to determine the absolute population size, but they do provide useful data on seasonal use of the nearshore migratory path, reproductive rates, long- term population trends and behaviors including breaching, spyhopping, rolling, courtship, nursing, possible feeding, and interaction with other marine mammals and humans. The program also provides data on many other marine mammals that frequent the area. Limits to Engagement Although engaging the public in biodiversity is often essential to generating the political support needed for biodiversity conservation, some areas become so popular with the public that limits must be placed on visitation. National parks, of course, must limit visitation in order to preserve the resource and to maintain the quality of the experience for visi- tors. But similar problems exist outside the parks, as we have seen locally with tidepools, always a source of fascination for visitors but seriously limited in area and highly vulnerable to damage by collecting and tram- pling. This problem has been addressed in a new and quantitative way by the Tidepool Education Interpretive Program at the Treasure Island Seashore in Laguna Beach (Rosaler, 2007). Over a one-year period, 29,363

326  /  Peter J. Bryant visitors were observed and 18,268 were approached by program staff for an “educational interaction.” During that time the staff witnessed 1,205 infractions of the city’s posted tidepool rules (Never pick up or remove animals, shells, or rocks; Do not pull animals off the rocks, or poke them with sticks; Walk gently, taking care not to step on plants or animals; Never turn over rocks). The study showed a low number (0–20) of infractions up to a certain level of visitation, but after the visitations exceeded about 250 people per day the number of infractions increased substantially. This suggested that at this population density the visitors become increasingly difficult to manage and that this particular beach had a visitor “carrying capacity” of about 250 per day, above which additional management tech- niques are required to prevent degradation of the resource. Rescue and Restoration The public is also engaged in biodiversity issues through animal rescue and habitat restoration programs. One of the most active animal rescue operations locally is the Pacific Marine Mammal Center in Laguna Beach (http://www.pacificmmc.org/), which was set up by Friends of the Sea Lion in 1971. Every year the staff and volunteers rescue between 150 and 200 marine mammals including California sea lions, harbor seals, and elephant seals and treat them for malnourishment, injuries, entangle- ment in fishing gear, and shellfish poisoning. Volunteers commit a total of over 25,000 hours per year to the program. The Wetlands and Wildlife Care Center in Huntington Beach (http://wwccoc.org/) also provides care and rehabilitation of native wildlife, with a capacity of 400 birds and mammals. Many habitat areas in Orange County have suffered from years of overgrazing, spreading of invasive plants, and other forms of damage, and these areas are now being restored in volunteer efforts by many different organizations. These include ROOTS: A Community-Based Restoration and Education Program for Upper Newport Bay sponsored by the Cali- fornia Coastal Commission (Yurko, 2007). Volunteer duties include plant installation, invasive plant removal, site maintenance, site monitoring, native seed collection and propagation, administration, and educational efforts including school field trips and teacher workshops. Since 2002, 8,300 volunteers have participated, totaling 23,500 volunteer hours, and there are nine current restoration sites covering approximately 12 acres. A similar effort is Second Sundays (Naegele, 2007), managed by Orange County Parks, involving County staff and volunteers on over 5 acres of land, involving 2,200 volunteer hours during the first 7 months of 2007. A local nonprofit organization, Back to Natives (http://www.backtonatives. org/), also manages volunteer restoration programs. The Orange County

Further Engaging the Public on Biodiversity Issues  /  327 Parks Adopt-A-Park Volunteer Program works to maintain and interpret over 39,000 acres of parkland and open space throughout the county in collaboration with several nonprofit support groups. Their volunteer opportunities are listed on the Orange County Wild web site (http:// www.ocwild.org/Files/volFlyerOC.pdf). Some of our local restoration efforts have been managed for the benefit of individual endangered species. These include the Endangered Species Habitat Restoration Day at the Seal Beach National Wildlife Refuge, for the benefit of Belding’s Savannah sparrow and the California least tern and organized by the Aquarium of the Pacific (http://www.aquariumofpacific. org/). A habitat restoration program by the Beach Bluffs Restoration Proj- ect in Redondo Beach, California, was successful beyond expectations in bringing back the endangered El Segundo blue butterfly to its native habitat from which it had been missing for decades (USA Today, 2007). Organizations Engaging the Public Orange County is home to an amazing number of organizations and chapters of national organizations concerned with conservation of groups of animals or plants, or preservation of individual natural areas. They are too numerous to list here, but can be found on the Orange County Directory and Search Engine @OC (http://www.at-oc.com/community/ environment.htm).

Next: 18 Where Does Biodiversity Go from Here? A Grim Business-as-Usual Forecast and a Hopeful Portfolio of Partial Solutions--PAUL R. EHRLICH and ROBERT M. PRINGLE »
In the Light of Evolution: Volume II: Biodiversity and Extinction Get This Book
×
Buy Hardback | $80.00 Buy Ebook | $64.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

The current extinction crisis is of human making, and any favorable resolution of that biodiversity crisis--among the most dire in the 4-billion-year history of Earth--will have to be initiated by mankind. Little time remains for the public, corporations, and governments to awaken to the magnitude of what is at stake. This book aims to assist that critical educational mission, synthesizing recent scientific information and ideas about threats to biodiversity in the past, present, and projected future.

This is the second volume from the In the Light of Evolution series, based on a series of Arthur M. Sackler colloquia, and designed to promote the evolutionary sciences. Each installment explores evolutionary perspectives on a particular biological topic that is scientifically intriguing but also has special relevance to contemporary societal issues or challenges. Individually and collectively, the ILE series aims to interpret phenomena in various areas of biology through the lens of evolution, address some of the most intellectually engaging as well as pragmatically important societal issues of our times, and foster a greater appreciation of evolutionary biology as a consolidating foundation for the life sciences.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  6. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  7. ×

    View our suggested citation for this chapter.

    « Back Next »
  8. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!