36. On the properties of SEP-effective shocks, see Gopalswamy, 2006, p. 250, §4.2 and Figure 5.


37. Smart, D.F., M.A. Shea, and K.G. McCracken, The Carrington event: Possible solar proton intensity-time profile, Adv. Space Res. 38, 215-225, 2006.


38. Cliver and Svalgaard (note 4) rank the Carrington event against other severe storms in terms of sudden ionospheric disturbance, SEP fluence, CME transit time, storm intensity, and equatorward extent of the aurora. They conclude, “While the 1859 event has close rivals or superiors in each of the above categories of space weather activity, it is the only documented event of the last ~150 years at or near the top of all the lists,” p. 407.


39. Walker, C.V., On magnetic storms and currents, Phil. Trans. Royal Soc. 151, 89-131, 1861. The quote is from p. 95: “The fact appears to have been that the disturbance was of such magnitude and of so long continuance, and this at the busy season when the telegraph is more than usually required, that our clerks were at their wits’ end to clear off the telegrams (which accumulated in their hands) by other less affected but less direct routes.”


40. Green et al., 2006, pp. 151-152, estimate a total global loss to the telegraph companies of $300,000 (lost revenue + operator labor loss) but note that there are not enough data to allow an estimate of the collateral impact of the telegraph outages.


41. Damage to Nozomi’s communications and power subsystems during a SEP event on April 21, 2002, contributed to the eventual loss of the Japanese Mars mission. The MARIE instrument on NASA’s Mars Odyssey is believed to have been irreparably damaged by SEP bombardment during the 2003 Halloween storms (Lee, K.T., et al., MARIE solar quiet time flux measurements of H and He ions below 300 MeV/n, 29th International Cosmic Ray Conference, 101-104, 2005). Ironically, MARIE was designed to measure the martian space radiation environment.


42. NRC, Space Radiation Hazards and the Vision for Space Radiation: Report of a Workshop, The National Academies Press, Washington D.C., 2006; NRC, Managing Space Radiation Risk in the New Era of Space Exploration, The National Academies Press, Washington, D.C., 2008.


43. “A typical flight duration for a polar route from a North American destination to Asia is over 15 hours. If the flight must divert for any reason, an additional stop-off is required. This results in considerable time loss, additional fuel, and the added time will require a whole new crew. The average cost of this kind of diversion is approximately $100,000.” NOAA, Intense Space Weather Storms October 19-November 07, 2003, NOAA National Weather Service, Silver Spring, Md., April 2004, p. 17.

The National Academies of Sciences, Engineering, and Medicine
500 Fifth St. N.W. | Washington, D.C. 20001

Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement