Such cost information is interesting and useful—but as the outcome of the workshop and this report make clear, it is at best only a starting point for the challenge of answering the question implicit in the title: What are the societal and economic impacts of severe space weather? To answer this question quantitatively, multiple variables must be taken into account, including the magnitude, duration, and timing of the event; the nature, severity, and extent of the collateral effects cascading through a society characterized by strong dependencies and interdependencies; the robustness and resilience of the affected infrastructures; the risk management strategies and policies that the public and private sectors have in place; and the capability of the responsible federal, state, and local government agencies to respond to the effects of an extreme space weather event. While this workshop, along with its report, has gathered in one place much of what is currently known or suspected about societal and economic impacts, it has perhaps been most successful in illuminating the scope of the myriad issues involved, and the gaps in knowledge that remain to be explored in greater depth than can be accomplished in a workshop. A quantitative and comprehensive assessment of the societal and economic impacts of severe space weather will be a truly daunting task, and will involve questions that go well beyond the scope of the present report.



1. The Carrington event is by several measures the most severe space weather event on record. It produced several days of spectacular auroral displays, even at unusually low latitudes, and significantly disrupted telegraph services around the world. It is named after the British astronomer Richard Carrington, who observed the intense white-light flare associated with the subsequent geomagnetic storm.


2. For the spacecraft industry, for example, space weather predictions are less important than knowledge of climatology and especially of the extremes within a climate record.


3. False alarms are disruptive and expensive. Accurate forecasts of a severe magnetic storm would allow power companies to mitigate risk by canceling planned maintenance work, providing additional personnel to deal with adverse effects, and reducing the amount of power transfers between adjacent systems in the grid. However, as was pointed out during the workshop, if the warning proved to be a false alarm and planned maintenance was canceled, the cost of large cranes, huge equipment, and a great deal of material and manpower sitting idle would be very high.

The National Academies of Sciences, Engineering, and Medicine
500 Fifth St. N.W. | Washington, D.C. 20001

Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement