Click for next page ( 218


The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement



Below are the first 10 and last 10 pages of uncorrected machine-read text (when available) of this chapter, followed by the top 30 algorithmically extracted key phrases from the chapter as a whole.
Intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text on the opening pages of each chapter. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

Do not use for reproduction, copying, pasting, or reading; exclusively for search engines.

OCR for page 217
7 Strategies to Reduce Fatigue Risk in Resident Work Schedules The scientific literature makes clear that risks of fatigue-related errors and accidents derive from multiple interacting variables of work and sleep. This chapter discusses the literature on sleep and human performance and recommends specific adjustments to the current Accreditation Council for Graduate Medical Education (ACGME) resident duty hours to enhance the prevention and mitigation of resident fatigue as an unsafe condition, thereby improving performance and the safety of both patients and resi- dents. The major rationales for the recommendations are the following: () work duration should be limited because human performance degrades after  hours of wakefulness whether one is working or not; () suffi- cient time for sleep needs to be incorporated into daily and weekly work schedules to prevent acute and chronic sleep deprivation, respectively, and to allow recovery from accumulated sleep debt; and () when extended duty periods are considered an essential aspect of resident training and continuity of care, a protected sleep period should be provided during that period to reduce the effects of acute sleep loss and to enhance performance. Because of the diversity of specialty and hospital needs, the committee leaves some flexibility for programs, but urges that adequate protected sleep periods be maintained, and that fatigue prevention and mitigation be a matter of professionalism that requires attention by residents, attending physicians and all those charged with maintaining patient safety. The consensus committee was charged by the Agency for Healthcare Research and Quality (AHRQ) to “1) synthesize current evidence on medi- cal resident schedules and healthcare safety and 2) develop strategies to enable optimization of work schedules to improve safety in the healthcare 

OCR for page 217
 RESIDENT DUTY HOURS work environment.” This chapter deals with scientific evidence that fatigue is an unsafe condition that can occur relative to the timing and duration of work and sleep opportunities, which are fundamental components of residents’ schedules. The chapter reviews scientific literature on fatigue, its consequences, and its prevention, and provides recommendations and evi- denced-based justifications for ways to reduce fatigue as a safety risk while residents are training intensively by working long hours. Many of the recommendations focus on ensuring residents obtain ad- equate sleep, which research has shown is among the most fundamental biological needs, to counter fatigue and promote learning and memory. The focus on resident fatigue prevention in the recommendations for duty hour adjustments in the latter sections of this chapter is a response to AHRQ’s charge that the committee develop strategies to enable optimization of work schedules to improve safety in the healthcare work environment. Other chapters in this report recommend additional ways in which safety can be enhanced through supervision, appropriate workload, teamwork, and sys- tem changes. This chapter takes an evidenced-based approach to developing recommended changes in only those aspects of resident duty hours that are most likely to result in fatigue as an unsafe condition that can pose risks to both patients and residents. Thus, to retain the training value and flex- ibility in scheduling required by different specialties and rotations within specialties, while preventing and mitigating sleep loss that contributes to fatigue-related errors and accidents, the recommendations derived from this chapter relative to duty hours are focused more on providing predict- able and protected time for sleep and recovery sleep than on limiting total work hours. FATIGUE, WORK HOURS, AND SLEEP LOSS In healthy individuals, fatigue is a general term used to describe feelings of tiredness, reduced energy, and the increased effort needed to perform tasks effectively and avoid errors. It occurs as performance demands in- crease because of work intensity and work duration, but it is also a prod- uct of the quantity and quality of sleep and the time of day work occurs (Dinges, 2001). All of these factors are relevant aspects of residency train- ing duty hours (Buysse et al., 2003). Some current aspects of resident duty hours can interfere with normal sleep patterns and lead to sleep depriva- tion, with the extent of this deprivation differing according to the workload demands and schedule of each residency specialty. Risks of fatigue-related errors and accidents in relation to work sched- ules derive not from the single factor of the total hours of work in a week, but from multiple interrelated and interacting aspects of work, rest, and sleep. These include but are not limited to (1) the duration of work peri-

OCR for page 217
 STRATEGIES TO REDUCE FATIGUE RISK ods within a single day and over time, (2) the time of day at which work occurs, (3) variation in the timing of work within and between weeks, (4) the duration of sleep obtained on work days and on non-work days, (5) the frequency and duration of days off from work, (6) the different vulner- abilities of workers to fatigue from these factors, and (7) the volume and intensity of work (Dinges, 1995; Drake et al., 2004; Folkard et al., 2005; Rosa, 2001; Van Dongen, 2006). It is not surprising that concern about the negative effects of sleep deprivation on residents is one of the primary reasons duty hour restrictions have been implemented by the Accreditation Council for Graduate Medical Education (ACGME, 2003). This chapter contains a synthesis of the current evidence about fatigue, performance, and safety risks posed by different work-rest-sleep factors applicable to current ACGME duty hour rules and possible adjustments to those rules. First, the chapter focuses on acute sleep deprivation and ways to prevent the development of acute sleep loss (e.g., shorter duty periods) or ways to mitigate the effects of acute sleep loss by use of sleep during extended duty periods that may be required for patient care and education. The chapter then examines ways to prevent and address the accumulation of chronic partial sleep loss in residents. After reviewing this evidence, the committee proposes strategies to enable optimization of resident work schedules to improve safety in the healthcare work environment while tak- ing into account the learning and experience that residents must achieve during their training. NEED FOR SLEEP A sizeable scientific literature exists on the extent to which preventing fatigue, and its associated cognitive performance deficits, depends heavily upon the extent to which acute (daily) and chronic (weekly) sleep needs are met. Moreover, reviews of the risks posed by residency duty hours have emphasized that prevention of sleep deprivation in residents is the most important way to reduce fatigue risks to patient and resident safety (Baldwin and Daugherty, 2004; Buysse et al., 2003; Cavallo and Mallory, 2004; Gaba and Howard, 2002; Howard et al., 2002; Landrigan et al., 2007; Lockley et al., 2006; Parshuram, 2006; Veasey et al., 2002; Weinger and Ancoli-Israil, 2002). Below the committee reviews evidence concerning the benefits to human performance, and potentially to patient safety, from increased sleep time. Before the 2003 duty hour reforms, first-year residents reported sleep- ing an average of 5.7 (standard deviation [SD] .90) hours per night and second-year residents reported an average of 5.98 (SD .98) hours (Baldwin and Daugherty, 2004). However, self-reported sleep times tend to over- estimate actual physiological sleep obtained (Jean-Louis et al., 2000). No

OCR for page 217
0 RESIDENT DUTY HOURS national study of resident sleep hours is available post duty hour reform in 2003. Furthermore, the average number of hours reported by residents may mask the actual degree of sleep deprivation because the schedule of work (e.g., night work, extended duty shifts) may significantly influence the amount of uninterrupted sleep possible. Reducing work hours does not necessarily result in a corresponding increase in sleep hours. An examination of work hours and the amount of sleep obtained by residents shows that there is a statistically significant but only moderate correlation between residents’ work hours and their sleep hours, with approximately 15 percent (Baldwin and Daugherty, 2004; Baldwin et al., 2003) to 33 percent (Lockley et al., 2004) of common vari- ance between work time and sleep time (see Figure 7-1). The varied elements influencing fatigue interact in complex ways that make it difficult to attribute risk of reduced resident performance to re- duced hours of work. For example, the study by Landrigan and colleagues (2004) restricted the work of interns to approximately 16 hours at a time and eliminated extended duty periods (24 hours or more), which resulted in an average of 19.5 hours less work per week than the traditional schedule, but it also resulted in 5.8 hours more sleep per week. A survey conducted by Baldwin and Daugherty (2004) of residents prior to the 2003 duty hour limits also revealed an inverse relationship between average weekly work hours reported by residents and average weekly sleep time (Figure 7-1A). Thus, it is not possible to isolate the distinct effects of shift length, total work hour limitation, increased sleep time, and/or other consequences of adjusting the duty hour limits (e.g., increased staffing) on the reduction of medical errors found by Landrigan and colleagues (2004). Although the separate contribution of increased sleep time to error reduction cannot be measured, there is ample reason (reviewed below) that sleep could be the primary way in which fatigue and its risks were mitigated in the residents studied by Landrigan and colleagues. Circadian Influence Acute sleep loss begins when an individual remains awake beyond 16 to 18 hours or into the habitual nocturnal period for sleep (Van Dongen and Dinges, 2005). Extensive research has shown the brain’s circadian sys- tem ceases to oppose the physiologic pressure for sleep after 16-18 hours of being awake. This results in steady increases between midnight and 6- 10 a.m. (when the body is biologically programmed to sleep) in sleepiness and sleep propensity, lapses of attention and memory, and a wide range of other cognitive performance deficits (Van Dongen and Dinges, 2005). This natural pressure for sleep occurs when someone is awake at night, whether or not the person is working. Morning hours (4-10 a.m.) are a peak time

OCR for page 217
 STRATEGIES TO REDUCE FATIGUE RISK A B 7-1a FIGURE 7-1 Relationship of residents’ average weekly sleep to average weekly hours of work. NOTE: Figure A is survey data from n = 3,406 residents. Scatterplot of reported average weekly work hours of sleep with reported average weekly work hours, PGY (postgraduate year) 1 and PGY2 combined (regression line plotted, r = –.39). Figure B is sleep log data in n = 20 interns. Relationship between the duration of work and the duration of sleep for 20 interns during the traditional schedule and the intervention schedule. The duration of work and the duration of sleep were inversely correlated (r = –0.57, p < 0.001) during the traditional intervention sched- ules, with the best-fit regression predicting a 19.2-minute loss of sleep per week for every additional hour of work per week. (A) Reprinted, with permission, from Baldwin and Daugherty, 2004. Copyright 2004 by the American Academy of Sleep Medicine. (B) Reprinted, with permission, from Lockley et al., 2004. Copyright © 2004 Mas- sachusetts Medical Society. All rights reserved.

OCR for page 217
 RESIDENT DUTY HOURS for drowsy driving accidents (Pack et al., 1995) and other industrial catas- trophes (Dinges, 1995; Mitler et al., 1988). However, our innate circadian biology begins promoting wakefulness during the day. Performance impair- ments from a night without sleep actually decline somewhat by 6-10 p.m. (i.e., at 36-40 hours of being awake) relative to the peak for poor perfor- mance earlier in the day between 6 and 10 a.m. (i.e., 24-28 hours awake) (Van Dongen and Dinges, 2005). This circadian modulation of sleepiness and alertness was part of the justification for ACGME’s settling on a 30- hour rather than a 24-hour extended duty period (ACGME, 2003, 2004), although some programs scheduled these extended duty periods in a non- circadian fashion (e.g., starting the 30 hours at noon). EFFECTS OF ACUTE SLEEP DEPRIVATION ON HUMAN PERFORMANCE Findings on the effects of 30-hour extended duty periods on the perfor- mance of physicians (Philibert, 2005) and the reduction in adult intensive care unit (ICU) medical errors when intern duty periods were limited to approximately 16 hours (Landrigan et al., 2004) received much attention in the medical community. These results, however, were not surprising given data that have accumulated over the past 100 years about the effects of sleep deprivation on attention, memory, and a range of cognitive func- tions (Dinges and Kribbs, 1991; Durmer and Dinges, 2005; Harrison and Horne, 2000; Kleitman, 1963; Patrick and Gilbert, 1896). There is a sub- stantial scientific literature on the cognitive and functional deficits induced when healthy (non-physician) adult volunteers remain awake for 24 to 40 hours (Durmer and Dinges, 2005; Harrison and Horne, 2000; IOM, 2006; Philibert, 2005). In addition, neuroimaging studies have confirmed that a night without sleep results in changes in brain functions that are associated with unstable and inaccurate performance on a wide range of cognitive tasks including attention, working memory, and executive functions such as problem solving and decision making (Bell-McGinty et al., 2004; Chee and Choo, 2004; Chee et al., 2006, 2008; Chuah et al., 2006; Drummond et al., 1999, 2000, 2005; Habeck et al., 2004; Lim et al., 2007; Portas et al., 1998; Thomas et al., 2000; Wu et al., 2006). Although the majority of healthy adults exposed to wakefulness ex- tended from 16-18 hours to 24-30 hours experience performance-impairing fatigue, there are substantial differences among individuals in the onset and magnitude of cognitive changes induced by a night without sleep (Doran et al., 2001; Leproult et al., 2003; Van Dongen et al., 2004). There is as yet no reliable objective biomarker for differential vulnerability to the effects of sleep loss, although a recent study suggests one possible genetic candidate (Groeger et al., 2008; Viola et al., 2007). Approaches designed to help in-

OCR for page 217
 STRATEGIES TO REDUCE FATIGUE RISK dividuals become aware of their own personal vulnerability to the cognitive effects of sleep loss, combined with information on how to prevent these effects, could form the basis of a more personalized fatigue management system (Dinges, 2004; Van Dongen et al., 2007). ACGME is encouraged to look into developing these systems based on the approaches developed in regulated transportation industries for their applicability to residency. ACUTE SLEEP DEPRIVATION AND RESIDENT PERFORMANCE Current ACGME duty hours set an upper limit on duty hours of 24 hours with an additional 6 hours to allow adequate time for patient fol- low-up, didactic learning, and patient handovers (ACGME, 2003, 2004). ACGME proposed this 30-hour work limit (also referred to as a “long call” schedule or an extended duty period [Knauth, 2007]) in order “to address the effects of acute sleep loss” (ACGME, 2003). However, this limit does not adequately protect against acute sleep loss (Dinges, 2005; Philibert, 2005). An ACGME meta-analysis of 60 studies on the effects of sleep deprivation in 959 physicians found that “Sleep loss of less than 30 hours reduced physicians’ overall performance by nearly 1 standard deviation and clinical performance by more than 1.5 standard deviations” (Philibert, 2005, p. 1392). These very large effect sizes on a large sample of resident physicians leave little doubt that acute total sleep loss of 30 hours dimin- ishes resident performance. Thus, it was concluded that allowing residents to stay awake for 30 hours on duty “may not completely guard against the negative effect of sleep loss on cognitive and clinical performance” (Philibert, 2005, p. 1392). Both realistic patient simulator studies (Howard et al., 2003) and field studies of residents working extended duty periods (24 or more hours) have often found performance deficits post-call relative to pre-call (Eastridge et al., 2003; Friedman et al., 1971; Kahol et al., 2008; Leonard et al., 1998). However, some studies have not found such deficits (e.g., Jakubowicz et al., 2005; Jensen et al., 2004; Uchal et al., 2005). It is not possible to determine whether the latter studies had inadequate power to detect statistically sig- nificant differences as a function of work time. Since all of these field studies vary greatly in the rigor of their study designs and methods, what factors specifically contributed to the different outcomes cannot be determined. As in the more well-designed study by Landrigan and colleagues (2004), factors other than work duration per se (e.g., differences in degree of sleep deprivation) may have contributed to those findings in which extended duty hours reduced resident performance. The prospective controlled study of Landrigan and colleagues suggests that performance deficits associated with extended duty periods (24 + 6 hours) could adversely affect patient safety (Landrigan et al., 2004), and that the increased sleep time resulting from

OCR for page 217
4 RESIDENT DUTY HOURS elimination of these long on-call duty periods might have helped to decrease attentional failures stemming from sleep loss during overnight work hours (Lockley et al., 2004). In contrast, retrospective studies, such as one by Ellman (2005), have not shown differences in patient outcomes. The findings of the meta-analysis conducted by ACGME on the ef- fects of sleep deprivation on physicians (Philibert, 2005) are consistent with previous reviews of the adverse effects of work periods beyond 24 hours on resident performance (Asken and Raham, 1983; Veasey et al., 2002), and with the report on the beneficial effects of limiting ICU interns’ continuous work periods to “approximately 16 hours” (Landrigan et al., 2004, p. 1839). Furthermore, a nationwide web-based survey of 2,737 in- terns found that extended work duration was associated with an increased risk of percutaneous injuries to interns (Ayas et al., 2006), and the more frequently interns experienced an extended work period of 24-30 hours, the more fatigue-related errors they reported (Barger et al., 2006b; see also Gander et al., 2000). Thus, considerable evidence as reviewed in this chap- ter now exists to suggest that the 2003 ACGME extended duty hour limit for residents of 24 + 6 continuous hours (ACGME, 2003) is likely to result in increased risks (via performance errors) to both patients and residents than shorter-duration work periods. The same 2,737 interns queried for information on fatigue-related er- rors (Barger et al., 2006b) and percutaneous injuries (Ayas et al., 2006) during extended duty periods were also asked about motor vehicle inci- dents and crashes. Sleep deprivation from extended shifts contributed to significantly elevated risks of motor vehicle crashes, near-miss incidents, and incidents involving involuntary sleep while driving home from the hospital after an extended duty period (post-call) compared to drives home after non-extended work periods. The odds ratio for sleep-deprived drivers was 2.3 for crashes and 5.9 for near-miss incidents (Barger et al., 2005). An earlier smaller survey of residents found comparable results (Marcus and Loughlin, 1996). The willingness of residents to drive when they are drowsy may be, in part, associated with the effects of sleep deprivation on judgment. Recent studies have found that sleep loss can result in greater risk taking (Killgore et al., 2006; McKenna et al., 2007; Roehrs et al., 2004; Venkatraman et al., 2007). Collectively, the research on resident physicians indicates that sleep loss associated with having to stay awake for an extended period (up to 30 hours or more)—rather than the performance of work per se—is likely the primary reason that neurobehavioral and cognitive performance degrades during residents’ extended duty periods. This conclusion is consistent with findings from laboratory studies of healthy adults showing that the adverse effects on cognitive performance of remaining awake 24 or more hours are found even when people are awake without working (Dinges and Kribbs, 1991; Harrison and Horne, 1999, 2000).

OCR for page 217
 STRATEGIES TO REDUCE FATIGUE RISK ACUTE SLEEP LOSS PLUS INExPERIENCE IN FIRST-YEAR RESIDENTS The seminal studies by the Harvard Work Hours, Health and Safety Group on resident duty hours in relation to both patient safety (Barger et al., 2006b; Landrigan et al., 2004) and resident safety (Ayas et al., 2006; Barger et al., 2005) focused on interns (first-year resident physicians) who are the least experienced and work more hours, and therefore are more prone to errors if not properly supervised. Interns are also more sleep deprived than other resident physicians. A national random sample survey that obtained data on sleep from 3,604 first-year (interns) and second-year residents during 1998-1999 found that interns reported obtaining signifi- cantly less sleep than second-year residents (Baldwin and Daugherty, 2004). Interns also had significantly more prolonged sleep deprivation and longer single periods without sleep than second-year residents. Additionally, this study found that residents averaging 5 or fewer hours of sleep per night were more likely to report serious accidents or injuries, conflict with other professional staff, use of alcohol, use of medications to stay awake, notice- able weight change, working in an impaired condition, and having made significant medical errors. Residents reporting more instances of inadequate supervision and occasions of working while impaired, as well as those who believed that they should have taken time off for illness but did not, also re- ported less sleep time and more sleep deprivation (Baldwin and Daugherty, 2004). While these results pre-date the current ACGME resident duty hour limits and consequently may not generalize to residents today, they are consistent with the more recent studies by the Harvard Work Hours, Health and Safety Group indicating that sleep deprivation in interns (the least experienced residents) poses an unsafe condition. WORK DURATION AND RISK Continuous time spent performing work (referred to as time on task) may also increase the risk of accidents, but this is less clearly understood and documented than the contribution of acute sleep deprivation to the risk of accidents. Reviews across industries of the relative risk of accidents as a function of work hour duration (with attempts to adjust for exposure) generally conclude that the risk of accidents can begin to increase as time working exceeds 8 hours, and especially when it exceeds 12 hours, although the increases in risk after 12 hours of work are not always consistent or large (Caruso et al., 2004; Knauth, 2007; Nachreiner, 2001). There are very few data, however, to inform work-hour guidelines in health care. A retrospective analysis of 411 recorded medical staff expo- sures to biological fluid at a university hospital with an emergency medicine

OCR for page 217
 RESIDENT DUTY HOURS residency program found a statistically significant increase (after adjusting for the number of workers per exposure) in exposures during 9-12 hours on duty (Macias et al., 1996). Two studies involving a total of 895 U.S. hospital staff nurses found an increase in self-reported errors and near- errors when work shifts were extended to 12.5 hours or longer (Rogers et al., 2004; Scott et al., 2006), although a smaller (and likely underpowered) study of nurses in Japan who were allowed to nap while working reported that 16-hour night shifts did not result in greater fatigue or difficulties con- centrating than 8-hour night shifts (Takahashi et al., 1999). A report by the National Institute of Occupational Safety and Health on overtime and extended work shifts has concluded that factors other than simply work duration per se contribute to the relationship between work duration and risk (Caruso et al., 2004). These factors are similar to the list at the beginning of this chapter and include shift start time, total hours worked in a week, rotation of work shifts between day and night work, and workload (e.g., Macdonald and Bendak, 2000). Moreover, there is much less information on the effects of work durations beyond 12 hours (Caruso et al., 2004), prompting the National Occupational Research Agenda Long Work Hours Team to propose a framework for future studies of long work hours, “including determinants, outcomes, and moderating factors of long work hours, suggesting that studies need to include more clear and com- plete descriptions of work schedules, worker characteristics, and the work environment, and need to consider a wider range of possible health, safety, social and economic outcomes for workers, families, employers, and the community. Additional studies are needed on vulnerable employee groups and those critical to public safety. More studies are also needed to develop interventions and test their effectiveness” (Caruso et al., 2006, p. 930). Maximal Hour Limits per Shift The evidence reviewed above supports the conclusion that performance is compromised by remaining awake beyond 16 hours (i.e., acute sleep deprivation). Therefore the extended duty shifts (24 + 6 hours) permitted in the current ACGME resident duty hour limits (ACGME, 2003) promote conditions for fatigue-related errors that pose risks to both patients and residents (Ayas et al., 2006; Barger et al., 2006a; Landrigan et al., 2004; Lockley et al., 2007). Limiting continuous work time to 16 hours would reduce these risks. A 16-hour continuous work limit is also reasonable in light of studies that equate the effects on performance from being awake more than 16 hours to the effects of 0.05 to 0.10 percent blood alcohol concentration (Arnedt et al., 2005; Dawson and Reid, 1997; Lamond and Dawson, 1999; Williamson and Feyer, 2000). While 16 hours of continuous work reflects a clear limit relative to safety, there is no compelling evidence

OCR for page 217
 STRATEGIES TO REDUCE FATIGUE RISK that risks to patient safety increase from 8 to 12 hours of work, but some data from nurses suggest that risk may increase after 12 hours of work, although the work-related factors that contribute to this risk are unknown (Bollschweiler et al., 2001; Rogers et al., 2004). In conclusion, the reviews of safe work hour limits and sleep depri- vation indicate that either extended duty periods must be eliminated to improve patient safety relative to resident performance (Landrigan et al., 2004, 2007), or if extended duty periods of 24 + 6 hours are to remain an essential feature of resident training, provision for sleep following 16 hours of work will be needed, before the extended work period continues to 30 hours. The mitigating effects of sleep are discussed below. PREVENTION OF ACUTE SLEEP DEPRIVATION This section reviews what is known about sleep obtained by residents during extended duty periods. As a fundamental biological function, sleep both stabilizes waking performance and enhances the ability to learn and remember (Huber et al., 2004; Lim and Dinges, 2008; Stickgold, 2005; Stickgold et al., 2000; Walker and Stickgold, 2006). Continued advances in neurobiology have identified circadian timing and homeostatic mechanisms in the brain (Fuller et al., 2006) that require sleep to be obtained daily in adequate quantity and quality to prevent the physiological and behavioral effects of sleep deprivation. Prevention of sleep deprivation in residents is regarded as among the most essential ways to manage fatigue and its risks (Buysse et al., 2003; Dawson and McCulloch, 2005; Gaba and Howard, 2002; Gabow et al., 2006; Horrocks et al., 2006; Landrigan et al., 2007; Parshuram, 2006; Veasey et al., 2002). The committee observed that ensuring residents obtain adequate sleep during their scheduled workweeks is a feature currently missing in the ACGME duty hours and resident training culture. Reduced sleep periods are common in many residency programs (Baldwin and Daugherty, 2004). Since current efforts to educate residents about sleep and fatigue management are by themselves not sufficient to increase sleep durations (Arora et al., 2007), requirements for protected sleep periods should be a priority in any new ACGME duty hour limits. Residents should practice good sleep hygiene and learn the importance of avoiding fatigue-related errors by obtaining essential sleep both daily and weekly as a matter of professional responsibility. Although reduction of resident duty hours alone is one way to achieve more sleep (Lockley et al., 2004, 2006, 2007), it is an indirect and ineffi- cient way to increase sleep given the moderate correlation between resident work hours and sleep time (see Figure 7-1) (Baldwin and Daugherty, 2004; Lockley et al., 2004). Reducing work hours could limit the time available for educational training experiences of residents (Ludmerer and Johns,

OCR for page 217
 RESIDENT DUTY HOURS Additionally, sponsoring institutions must not require that residents and fel- lows engage in moonlighting to cover cutbacks in hours on other services. So that moonlighting does not undermine the intent of limiting duty hours, the committee recommends the following. Recommendation 7-2: The ACGME should immediately amend its current requirements on moonlighting by • Requiring that any internal and external moonlighting for pa- tient care adhere to the duty hour limits listed above (e.g., 80 hours and all other limits), even if the program has received an exception to schedule longer hours, and • Requiring that sponsoring institutions, if they choose to permit moonlighting, include provisions in resident contracts that (1) a resident must request prospective, written permission from the program director for moonlighting; and (2) resident perfor- mance will be monitored to ensure that there is no adverse effect of moonlighting on resident performance. REFERENCES ACGME (Accreditation Council for Graduate Medical Education). 2003. Common program requirements for duty hours. Chicago, IL: ACGME. ———. 2004. Report of the workgroup on resident duty hours and the learning environment. Chicago, IL: ACGME. ———. 2007a. ACGME institutional requirements: Checklist, effective: July , 00. http:// www.acgme.org/acWebsite/irc/IRCheckList-07.pdf (accessed February 28, 2008). ———. 2007b. ACGME program requirements for graduate medical education in emergency medicine. Chicago, IL: ACGME. Akerstedt, T. 2003. Shift work and disturbed sleep/wakefulness. Occupational Medicine 53(2):89-94. Akerstedt, T., L. Torsvall, and M. Gillberg. 1989. Shift work and napping. In Sleep and alertness: Chronobiological, behavioral and medical aspects of napping, edited by D. F. Dinges and R. J. Broughton. New York: Raven Press. Pp. 205-220. Akerstedt, T., G. Kecklund, M. Gillberg, A. Lowden, and J. Axelsson. 2000. Sleepiness and days of recovery. Transportation Research Part F 3:251-261. Arnedt, J. T., J. Owens, M. Crouch, J. Stahl, and M. A. Carskadon. 2005. Neurobehav- ioral performance of residents after heavy night call vs after alcohol ingestion. JAMA 294(9):1025-1033. Arora, V., C. Dunphy, V. Y. Chang, F. Ahmad, H. J. Humphrey, and D. Meltzer. 2006. The effects of on-duty napping on intern sleep time and fatigue. Annals of Internal Medicine 144(11):792-798. Arora, V. M., E. Georgitis, J. N. Woodruff, H. J. Humphrey, and D. Meltzer. 2007. Improv- ing sleep hygiene of medical interns—Can the sleep, alertness, and fatigue education in residency program help? Archives of Internal Medicine 167(16):1738-1744. ———. 2008. Improving sleep hygiene—Reply. Archives of Internal Medicine 168(11):1230.

OCR for page 217
 STRATEGIES TO REDUCE FATIGUE RISK Asken, M. J., and D. C. Raham. 1983. Resident performance and sleep-deprivation—A review. Journal of Medical Education 58(5):382-388. Ayas, N. T., L. K. Barger, B. E. Cade, D. M. Hashimoto, B. Rosner, J. W. Cronin, F. E. Speizer, and C. A. Czeisler. 2006. Extended work duration and the risk of self-reported percutane- ous injuries in interns. JAMA 296(9):1055-1062. Baldwin, D. C., Jr., and S. R. Daugherty. 2004. Sleep deprivation and fatigue in resi- dency training: Results of a national survey of first- and second-year residents. Sleep 27(2):217-223. Baldwin, D. C., Jr., S. R. Daugherty, R. Tsai, and M. J. Scotti. 2003. A national survey of residents’ self-reported work hours: Thinking beyond specialty. Academic Medicine 78(11):1154-1163. Banks, S., and D. F. Dinges. 2007. Behavioral and physiological consequences of sleep restric- tion. Journal of Clinical Sleep Medicine 3(5):519-528. Barger, L. K., B. E. Cade, N. T. Ayas, J. W. Cronin, B. Rosner, F. E. Speizer, and C. A. Czeisler. 2005. Extended work shifts and the risk of motor vehicle crashes among interns. New England Journal of Medicine 352(2):125-134. Barger, L. K., N. T. Ayas, B. E. Cade, J. W. Cronin, B. Rosner, F. E. Speizer, and C. A. Czeisler. 2006a. Impact of extended-duration shifts on medical errors, adverse events, and atten- tional failures. PLoS Medicine 3(12):e487. ———. 2006b. Impact of extended-duration shifts on medical errors, adverse events, and at- tentional failures. PLoS Medicine 3(12):2440-2448. Belenky, G., N. J. Wesensten, D. R. Thorne, M. L. Thomas, H. C. Sing, D. P. Redmond, M. B. Russo, and T. J. Balkin. 2003. Patterns of performance degradation and restoration during sleep restriction and subsequent recovery: A sleep dose-response study. Journal of Sleep Research 12:1-12. Bell, B. M. 2003. Reconsideration of the New York state laws rationalizing the supervi- sion and the working conditions of residents. Einstein Journal of Biological Medicine 20(1):36-40. Bell-McGinty, S., C. Habeck, H. J. Hilton, B. Rakitin, N. Scarmeas, E. Zarahn, J. Flynn, R. DeLaPaz, R. Basner, and Y. Stern. 2004. Identification and differential vulnerability of a neural network in sleep deprivation. Cerebral Cortex 14(5):496-502. Bollschweiler, E., A. Krings, K. H. Fuchs, G. Pistorius, T. Bein, U. Otto, E. Muhl, U. Backes- Gellner, and A. H. Hölscher. 2001. Alternative shift models and the quality of patient care. An empirical study in surgical intensive care units. Langenbeck’s Archives of Sur- gery 386:104-109. Bonnefond, A., P. Tassi, J. Roge, and A. Muzet. 2004. A critical review of techniques aiming at enhancing and sustaining worker’s alertness during the night shift. Industrial Health 42(1):1-14. Bonnet, M. H. 1991. The effect of varying prophylactic naps on performance, alertness and mood throughout a 52-hour continuous operation. Sleep 14(4):307-315. Bonnet, M. H., and D. L. Arand. 2003. Clinical effects of sleep fragmentation versus sleep deprivation. Sleep Medicine Reviews 7(4):297-310. Bonnet, M. H., T. J. Balkin, D. F. Dinges, T. Roehrs, N. L. Rogers, and N. J. Wesensten. 2005. The use of stimulants to modify performance during sleep loss: A review by the sleep deprivation and stimulant task force of the American Academy of Sleep Medicine. Sleep 28(9):1163-1187. Buysse, D. J., B. Barzansky, D. Dinges, E. Hogan, C. E. Hunt, J. Owens, M. Rosekind, R. Rosen, F. Simon, S. Veasey, and F. Wiest. 2003. Sleep, fatigue, and medical training: Set- ting an agenda for optimal learning and patient care. Sleep 26(2):218-225.

OCR for page 217
4 RESIDENT DUTY HOURS Caldwell, J. A., Jr., and J. L. Caldwell. 1998. Comparison of the effects of zolpidem-induced prophylactic naps to placebo naps and forced rest periods in prolonged work schedules. Sleep 21(1):79-90. Caruso, C. C., E. M. Hitchcock, R. B. Dick, J. M. Russo, and J. M. Schmit. 2004. Overtime and extended work shifts: Recent findings on illnesses, injuries, and health behaviors. Cincinnati, OH: National Institute for Occupational Safety and Health, Centers for Dis- ease Control and Prevention, U.S. Department of Health and Human Services. Caruso, C. C., T. Bushnell, D. Eggerth, A. Heitmann, B. Kojola, K. Newman, R. R. Rosa, S. L. Sauter, and B. Vila. 2006. Long working hours, safety, and health: Toward a na- tional research agenda. American Journal of Industrial Medicine 49(11):930-942. Cavallo, A., and M. L. Mallory. 2004. Sleep deprivation, residency training, and ACGME rules: Practical guidelines. Journal of Pediatrics 145(6):717-718. Cavallo, A., J. Jaskiewicz, and M. D. Ris. 2002. Impact of night-float rotation on sleep, mood, and alertness: The resident’s perception. Chronobiology International 19(5):893-902. Cavallo, A., M. D. Ris, and P. Succop. 2003. The night float paradigm to decrease sleep de- privation: Good solution or a new problem? Ergonomics 46(7):653-663. Chee, M. W. L., and W. C. Choo. 2004. Functional imaging of working memory after 24 hr of total sleep deprivation. Journal of Neuroscience 24(19):4560-4567. Chee, M. W. L., L. Y. M. Chuah, V. Venkatraman, W. Y. Chan, P. Philip, and D. F. Dinges. 2006. Functional imaging of working memory following normal sleep and after 24 and 35 h of sleep deprivation: Correlations of fronto-parietal activation with performance. Neuroimage 31(1):419-428. Chee, M. W. L., C. H. Tan, Z. Hui, S. Parimal, S. D. Weissman, V. Zagorodnov, and D. F. Dinges. 2008. Lapsing during sleep deprivation is associated with distributed changes in brain activation. Journal of Neuroscience 28(21):5519-5528. Chuah, L. Y. M., V. Venkatraman, D. F. Dinges, and M. W. L. Chee. 2006. The neural basis of inter-individual variability in inhibitory efficiency following sleep deprivation. Journal of Neuroscience 26(27):7156-7162. CIR/SEIU (Committee of Interns and Residents-Service Employees International Union) Healthcare. 2007. Presentation by L. Toni Lewis to the Committee on Optimizing Graduate Medical Trainee (Resident) Hours and Work Schedules to Improve Patient Safety, December 3, 2007, Washington, DC. Cull, W. L., H. J. Mulvey, E. A. Jewett, E. L. Zalneraitis, C. E. Allen, and R. J. Pan. 2006. Pedi- atric residency duty hours before and after limitations. Pediatrics 118(6):e1805-e1811. Czeisler, C., E. D. Weitzman, M. C. Moore-Ede, J. C. Zimmerman, and R. S. Knauer. 1980. Human sleep—Its duration and organization depend on its circadian phase. Science 210(4475):1264-1267. Dawson, D., and K. McCulloch. 2005. Managing fatigue: It’s about sleep. Sleep Medicine Reviews 9(5):365-380. Dawson, D., and K. Reid. 1997. Fatigue, alcohol and performance impairment. Nature 388:235. Dinges, D. F. 1989. Napping. In Neuroscience year, edited by G. Adelman. Boston: Birkhäuser. Pp. 113-114. ———. 1990. Are you awake? Cognitive performance and reverie during the hypnopompic state. In Sleep and cognition, edited by R. R. Bootzin, J. F. Kihlstrom, and D. L. Schacter. Washington, DC: American Psychological Association. Pp. 159-175. ———. 1992. Adult napping and its effects on ability to function. In Why we nap. Evolution, chronobiology, and functions of polyphasic and ultrashort sleep, edited by C. Stampi. Boston: Birkhäuser. Pp. 119-134. ———. 1995. An overview of sleepiness and accidents. Journal of Sleep Research 4(Suppl 2):4-14.

OCR for page 217
 STRATEGIES TO REDUCE FATIGUE RISK ———. 2001. Stress, fatigue, and behavioral energy. Nutrition Reviews 59(1):S30-S32. ———. 2004. Critical research issues in development of biomathematical models of fatigue and performance. Aviation Space and Environmental Medicine 75(3):A181-A191. ———. 2005. Sleep deprivation, impairment of resident performance, and medical error. Journal of Bone and Joint Surgery 87a(11):2581-2582. Dinges, D. F., and R. J. Broughton, eds. 1989. Sleep and alertness: Chronobiological, behav- ioral and medical aspects of napping. New York: Raven Press. Dinges, D. F., and N. B. Kribbs. 1991. Performing while sleepy: Effects of experimentally- induced sleepiness. In Sleep, sleepiness and performance, edited by T. Monk. Chichester: John Wiley & Sons. Pp. 97-128. Dinges, D. F., M. T. Orne, and E. C. Orne. 1985. Assessing performance upon abrupt awaken- ing from naps during quasi-continuous operations. Behavior Research Methods, Instru- ments and Computers 17(1):37-45. Dinges, D. F., M. T. Orne, W. G. Whitehouse, and E. C. Orne. 1987. Temporal placement of a nap for alertness: Contributions of circadian phase and prior wakefulness. Sleep 10(4):313-329. Dinges, D. F., W. G. Whitehouse, E. Carota Orne, and M. T. Orne. 1988. The benefits of a nap during prolonged work and wakefulness. Work and Stress 2(2):139-153. Dinges, D. F., F. Pack, K. Williams, K. A. Gillen, J. W. Powell, G. E. Ott, C. Aptowicz, and A. I. Pack. 1997. Cumulative sleepiness, mood disturbance, and psychomotor vigilance performance decrements during a week of sleep restricted to 4-5 hours per night. Sleep 20(4):267-277. Dinges, D. F., N. L. Rogers, and M. D. Baynard. 2005. Chronic sleep deprivation. In Prin- ciples and practice of sleep medicine, 4th ed., edited by M. H. Kryger, T. Roth, and W. C. Dement. Philadelphia, PA: W. B. Saunders. Pp. 67-76. Dola, C., L. Nelson, J. Lauterbach, S. Degefu, and G. Pridjian. 2006. Eighty hour work re- form: Faculty and resident perceptions. American Journal of Obstetrics & Gynecology 195(5):1450-1456. Doran, S. M., H. P. Van Dongen, and D. F. Dinges. 2001. Sustained attention performance during sleep deprivation: Evidence of state instability. Archives Italiennes de Biologie 139(3):253-267. Dorrian, J., N. L. Rogers, and D. F. Dinges. 2005. Psychomotor vigilance performance: A neu- rocognitive assay sensitive to sleep loss. In Sleep deprivation: Clinical issues, pharmacol- ogy and sleep loss effects, edited by C. Kushida. New York: Marcel Dekker. Pp. 39-70. Drake, C. L., T. Roehrs, G. Richardson, J. K. Walsh, and T. Roth. 2004. Shift work sleep disorder: Prevalence and consequences beyond that of symptomatic day workers. Sleep 27(8):1453-1462. Driscoll, T. R., R. R. Grunstein, and N. L. Rogers. 2007. A systematic review of the neu- robehavioural and physiological effects of shiftwork systems. Sleep Medicine Reviews 11(3):179-194. Driskell, J. E., and B. Mullen. 2005. The efficacy of naps as a fatigue countermeasure: A meta- analytic integration. Human Factors 47(2):360-377. Drummond, S. P. A., G. G. Brown, J. L. Stricker, R. B. Buxton, E. C. Wong, and J. C. Gillin. 1999. Sleep deprivation-induced reduction in cortical functional response to serial sub- traction. NeuroReport 10:3745-3748. Drummond, S. P., G. G. Brown, J. C. Gillin, J. L. Stricker, E. C. Wong, and R. B. Buxton. 2000. Altered brain response to verbal learning following sleep deprivation. Nature 403(6770):655-657. Drummond, S. P. A., A. Bischoff-Grethe, D. F. Dinges, L. Ayalon, S. C. Mednick, and M. J. Meloy. 2005. The neural basis of the psychomotor vigilance task. Sleep 28(9):1059-1068.

OCR for page 217
 RESIDENT DUTY HOURS Durmer, J. S., and D. F. Dinges. 2005. Neurocognitive consequences of sleep deprivation. Seminars in Neurology 25(1):117-129. Eastridge, B. J., E. C. Hamilton, G. E. O’Keefe, R. V. Rege, R. J. Valentine, D. J. Jones, S. Tesfay, and E. R. Thal. 2003. Effect of sleep deprivation on the performance of simulated laparoscopic surgical skill. American Journal of Surgery 186(2):169-174. Ellman, P. I., I. L. Kron, J. S. Alvis, C. Tache-Leon, T. S. Maxey, T. B. Reece, B. B. Peeler, J. A. Kern, and C. G. Tribble. 2005. Acute sleep deprivation in the thoracic surgical resident does not affect operative outcomes. Annals of Thoracic Surgery 80(1):60-65. Federation of State Medical Boards. 2007. State-specific requirements for initial medical licen- sure. http://fsmb.org/usmle_eliinitial.html (accessed March 17, 2008). Feyer, A. M., and A. M. Williamson. 1995. Work and rest in the long-distance road transport industry in Australia. Work and Stress 9(2-3):198-205. Folkard, S., D. A. Lombardi, and P. T. Tucker. 2005. Shiftwork: Safety, sleepiness and sleep. Industrial Health 43(1):20-23. Friedman, R. C., J. T. Bigger, and D. S. Kornfield. 1971. The intern and sleep loss. New En- gland Journal of Medicine 285:201-203. Fuller, P. M., J. J. Gooley, and C. B. Saper. 2006. Neurobiology of the sleep-wake cycle: Sleep architecture, circadian regulation, and regulatory feedback. Journal of Biological Rhythms 21(6):482-493. Gaba, D. M., and S. K. Howard. 2002. Patient safety: Fatigue among clinicians and the safety of patients. New England Journal of Medicine 347(16):1249-1255. Gabow, P. A., A. Karkhanis, A. Knight, P. Dixon, S. Eisert, and R. K. Albert. 2006. Observa- tions of residents’ work activities for 24 consecutive hours: Implications for workflow redesign. Academic Medicine 81(8):766-775. Gander, P. H., A. Merry, M. M. Millar, and J. Weller. 2000. Hours of work and fatigue- related error: A survey of New Zealand anaesthetists. Anaesthesia Intensive Care 28(2):178-183. GovTrack.us. 2005. S. —0th congress: Patient and Physician Safety and Protection Act of 00. http://www.govtrack.us/congress/bill.xpd?bill=h109-1297&tab=summary (accessed March 29, 2008). Groeger, J. A., A. U. Viola, J. C. Y. Lo, M. Von Schantz, S. N. Archer, and D. J. Dijk. 2008. Early morning executive functioning during sleep deprivation is compromised by a PERIOD3 polymorphism. Sleep 31(8):1159-1167. Habeck, C., B. C. Rakitin, J. Moeller, N. Scarmeas, E. Zarahn, T. Brown, and Y. Stern. 2004. An event-related fMRI study of the neurobehavioral impact of sleep deprivation on per- formance of a delayed-match-to-sample task. Cognitive Brain Research 18(3):306-321. Harrison, Y., and J. A. Horne. 1999. One night of sleep loss impairs innovative think- ing and flexible decision making. Organic Behavioral Human Decision Processes 78(2):128-145. ———. 2000. The impact of sleep deprivation on decision making: A review. Journal of Ex- perimental Psychology: Applied 6(3):236-249. Horrocks, N., R. Pounder, and R. C. P. Working Group. 2006. Working the night shift: Preparation, survival and recovery—A guide for junior doctors. Clinical Medicine 6(1):61-67. Howard, S. K., D. M. Gaba, M. R. Rosekind, and V. P. Zarcone. 2002. The risks and im- plications of excessive daytime sleepiness in resident physicians. Academic Medicine 77(10):1019-1025. Howard, S. K., D. M. Gaba, B. E. Smith, M. B. Weinger, C. Herndon, S. Keshavacharya, and M. R. Rosekind. 2003. Simulation study of rested versus sleep-deprived anesthesiologists. Anesthesiology 98(6):1345-1355.

OCR for page 217
 STRATEGIES TO REDUCE FATIGUE RISK Huber, R., M. F. Ghilardi, M. Massimini, and G. Tononi. 2004. Local sleep and learning. Nature 430(6995):78-81. IOM (Institute of Medicine). 2006. Sleep disorders and sleep deprivation: An unmet public health problem. Washington, DC: The National Academies Press. Jakubowicz, D. M., E. M. Price, H. J. Glassman, A. J. G. Gallagher, N. Mandava, W. P. Ralph, and M. P. Fried. 2005. Effects of a twenty-four hour call period on resident performance during simulated endoscopic sinus surgery in an Accreditation Council for Graduate Medical Education-compliant training program. Laryngoscope 115(1):143-146. Jay, S. M., N. Lamond, S. A. Ferguson, J. Dorrian, C. B. Jones, and D. Dawson. 2007. The characteristics of recovery sleep when recovery opportunity is restricted. Sleep 30(3):353-360. Jean-Louis, G., D. F. Kripke, S. Ancoli-Israel, M. R. Klauber, and R. S. Sepulveda. 2000. Sleep duration, illumination, and activity patterns in a population sample: Effects of gender and ethnicity. Biological Psychiatry 47(10):921-927. Jensen, A., R. Milner, C. Fisher, J. Gaughan, R. Rolandelli, and H. Grewal. 2004. Short-term sleep deficits do not adversely affect acquisition of laparoscopic skills in a laboratory setting. Surgical Endoscopy and Other Interventional Techniques 18(6):948-953. Jewett, M. E., D. J. Dijk, R. E. Kronauer, and D. F. Dinges. 1999. Dose-response relationship between sleep duration and human psychomotor vigilance and subjective alertness. Sleep 22(2):171-179. Jha, A. K., B. W. Duncan, and D. W. Bates. 2001. Fatigue—Sleepiness and medical errors. Chapter 46. In Making health care safer: A critical analysis of patient safety practices, edited by K. G. Shojania, B. W. Duncan, K. M. McDonald, and R. M. Wachter. Evidence Report/Technology Assessment No. 43. Pp. 519-533. Rockville, MD: Agency for Health- care Research and Quality. Kahol, K., M. J. Leyba, M. Deka, V. Deka, S. Mayes, M. Smith, J. J. Ferrara, and S. Panchanathan. 2008. Effect of fatigue on psychomotor and cognitive skills. American Journal of Surgery 195(2):195-204. Killgore, W. D. S., T. J. Balkin, and N. J. Wesensten. 2006. Impaired decision making following 49 h of sleep deprivation. Journal of Sleep Research 15(1):7-13. Kleitman, N. 1963. Sleep and wakefulness. Chicago, IL: University of Chicago Press. Knauth, P. 2007. Extended work periods. Industrial Health 45(1):125-136. Knauth, P., and S. Hornberger. 2003. Preventive and compensatory measures for shift workers. Occupational Medicine 53(2):109-116. Kubo, T., H. Takeyama, S. Matsumoto, T. Ebara, K. Murata, N. Tachi, and T. Itani. 2007. Impact of nap length, nap timing and sleep quality on sustaining early morning perfor- mance. Industrial Health 45(4):552-563. Lamond, N., and D. Dawson. 1999. Quantifying the performance impairment associated with fatigue. Journal of Sleep Research 8:255-262. Lamond, N., S. M. Jay, J. Dorrian, S. A. Ferguson, C. Jones, and D. Dawson. 2007. The dynamics of neurobehavioural recovery following sleep loss. Journal of Sleep Research 16(1):33-41. Landrigan, C. P., J. M. Rothschild, J. W. Cronin, R. Kaushal, E. Burdick, J. T. Katz, C. M. Lilly, P. H. Stone, S. W. Lockley, D. W. Bates, and C. A. Czeisler. 2004. Effect of reduc- ing interns’ work hours on serious medical errors in intensive care units. New England Journal of Medicine 351(18):1838-1848. Landrigan, C. P., C. A. Czeisler, L. K. Barger, N. T. Ayas, J. M. Rothschild, and S. W. Lockley. 2007. Effective implementation of work-hour limits and systemic improvements. Joint Commission Journal on Quality and Patient Safety 33(11 Suppl):19-29. Lavie, P. 1986. Ultrashort sleep-waking schedule. 3: Gates and forbidden zones for sleep. Electroencephalography and Clinical Neurophysiology 63(5):414-425.

OCR for page 217
 RESIDENT DUTY HOURS Leonard, C., N. Fanning, J. Attwood, and M. Buckley. 1998. The effect of fatigue, sleep deprivation and onerous working hours on the physical and mental wellbeing of pre- registration house officers. Irish Journal of Medical Sciences 167(1):22-25. Leproult, R., E. F. Colecchia, A. M. Berardi, R. Stickgold, S. M. Kosslyn, and E. Van Cauter. 2003. Individual differences in subjective and objective alertness during sleep deprivation are stable and unrelated. American Journal of Physiology-Regulatory Integrative and Comparative Physiology 284(2):R280-R290. Levine, B., T. Roehrs, E. Stepanski, F. Zorick, and T. Roth. 1987. Fragmenting sleep diminishes its recuperative value. Sleep 10(6):590-599. Lim, J., and D. F. Dinges. 2008. Sleep deprivation and vigilant attention. Annals of the New York Academy of Sciences 1129:305-322. Lim, J., W. C. Choo, and M. W. L. Chee. 2007. Reproducibility of changes in behaviour and fMRI activation associated with sleep deprivation in a working memory task. Sleep 30(1):61-70. Lockley, S. W., J. W. Cronin, E. E. Evans, B. E. Cade, C. J. Lee, C. P. Landrigan, J. M. Rothschild, J. T. Katz, C. M. Lilly, P. H. Stone, D. Aeschbach, and C. A. Czeisler. 2004. Effect of reducing interns’ weekly work hours on sleep and attentional failures. New England Journal of Medicine 351(18):1829-1837. Lockley, S. W., C. P. Landrigan, L. K. Barger, and C. A. Czeisler. 2006. When policy meets physiology—The challenge of reducing resident work hours. Clinical Orthopaedics and Related Research (449):116-127. Lockley, S. W., L. K. Barger, N. T. Ayas, J. M. Rothschild, C. A. Czeisler, and C. P. Landrigan. 2007. Effects of health care provider work hours and sleep deprivation on safety and per- formance. Joint Commission Journal on Quality and Patient Safety 33(11 Suppl):7-18. Ludmerer, K. M., and M. M. E. Johns. 2005. Reforming graduate medical education. JAMA 294(9):1083-1087. Macdonald, W., and S. Bendak. 2000. Effects of workload level and 8- versus 12-h workday duration on test battery performance. International Journal of Industrial Ergonomics 26(3):399-416. Macias, D. J., J. Hafner, J. C. Brillman, and D. Tandberg. 1996. Effect of time of day and duration into shift on hazardous exposures to biological fluids. Academic Emergency Medicine 3(6):605-610. Marcus, C. L., and G. M. Loughlin. 1996. Effect of sleep deprivation on driving safety in housestaff. Sleep 19(10):763-766. McKenna, B. S., D. L. Dickinson, H. J. Orff, and S. P. A. Drummond. 2007. The effects of one night of sleep deprivation on known-risk and ambiguous-risk decisions. Journal of Sleep Research 16(3):245-252. Mitler, M. M., M. A. Carskadon, C. A. Czeisler, W. C. Dement, D. F. Dinges, and R. C. Graeber. 1988. Catastrophes, sleep, and public policy: Consensus report. Sleep 11(1):100-109. Mollicone, D. J., H. P. A. Van Dongen, N. L. Rogers, and D. F. Dinges. 2008. Response surface mapping of neurobehavioral performance: Testing the feasibility of split sleep schedules for space operations. Acta Astronautica 63(7-10):833-840. Nachreiner, F. 2001. Time on task effects on safety. Journal of Human Ergology 30(1-2): 97-102. Naitoh, P. 1992. Minimal sleep to maintain performance: The search for sleep quantum in sus- tained operations. In Why we nap: Evolution, chronobiology, and functions of polyphasic and ultrashort sleep, edited by C. Stampi. Boston: Birkhäuser. Pp. 199-216. Naitoh, P., and R. G. Angus. 1989. Napping and human functioning during prolonged work. In Sleep and alertness: Chronobiological, behavioral, and medical aspects of napping, edited by D. F. Dinges and R. J. Brougthon. New York: Raven Press. Pp. 221-246.

OCR for page 217
 STRATEGIES TO REDUCE FATIGUE RISK Ohayon, M. M., M. A. Carskadon, C. Guilleminault, and M. V. Vitiello. 2004. Meta-analysis of quantitative sleep parameters from childhood to old age in healthy individuals: Devel- oping normative sleep values across the human lifespan. Sleep 27(7):1255-1273. Owens, J. A., A. Avidan, D. Baldwin, and C. Landrigan. 2008. Improving sleep hygiene. Archives of Internal Medicine 168(11):1229-a-1230. Pack, A., A. M. Pack, E. Rodgman, A. Cucchiara, D. F. Dinges, and C. W. Schwab. 1995. Characteristics of crashes attributed to the driver having fallen asleep. Accident Analysis and Prevention 27(6):769-775. Parshuram, C. S. 2006. The impact of fatigue on patient safety. Pediatric Clinics of North America 53(6):1135-1153. Parthasarathy, S., K. Hettiger, R. Budhiraja, and B. Sullivan. 2007. Sleep and well-being of ICU housestaff. CHEST 131(6):1685-1693. Patrick, G. T. W., and J. A. Gilbert. 1896. On the effects of loss of sleep. Psychological Review 3(5):469-483. Persson, R., P. Orbaek, H. Ursin, G. Kecklund, and K. Osterberg. 2003. Effects of the imple- mentation of an 84-hour workweek on neurobehavioral test performance and cortisol responsiveness during testing. Scandinavian Journal of Work Environment & Health 29(4):261-269. Persson, R., P. Orbaek, G. Kecklund, and T. Akerstedt. 2006. Impact of an 84-hour workweek on biomarkers for stress, metabolic processes and diurnal rhythm. Scandinavian Journal of Work Environment & Health 32(5):349-358. Philibert, I. 2005. Sleep loss and performance in residents and nonphysicians: A meta-analytic examination. Sleep 28(11):1392-1402. Portas, C. M., G. Rees, A. M. Howseman, O. Josephs, R. Turner, and C. D. Frith. 1998. A specific role for the thalamus in mediating the interaction of attention and arousal in humans. Journal of Neuroscience 18(21):8979-8989. Richardson, G. S., J. K. Wyatt, J. P. Sullivan, E. J. Orav, A. E. Ward, M. A. Wolf, and C. A. Czeisler. 1996. Objective assessment of sleep and alertness in medical house staff and the impact of protected time for sleep. Sleep 19(9):718-726. Roehrs, T., M. Greenwald, and T. Roth. 2004. Risk-taking behavior: Effects of ethanol, caf- feine, and basal sleepiness. Sleep 27(5):887-893. Rogers, A. E., W. T. Hwang, L. D. Scott, L. H. Aiken, and D. F. Dinges. 2004. The working hours of hospital staff nurses and patient safety. Health Affairs 23(4):202-212. Rosa, R. R. 2001. Examining work schedules for fatigue: It’s not just hours of work. In Stress, workload, and fatigue, edited by P.A. Hancock and P. A. Desmond. Mahwah, NJ: Lawrence Erlbaum Associates. Pp. 513-528. Rosekind, M. R., R. C. Graeber, D. F. Dinges, L. J. Connell, M. S. Rountree, C. L. Spinweber, and K. A. Gillen. 1994. Crew factors in flight operations IX: Effects of planned cockpit rest on crew performance and alertness in long-haul operations. Moffett Field, CA: NASA Ames Research Center. Rosekind, M. R., R. M. Smith, D. L. Miller, E. L. Co, K. B. Gregory, L. L. Webbon, P. H. Gander, and J. V. Lebacqz. 1995. Alertness management: Strategic naps in operational settings. Journal of Sleep Research 4(Suppl 2):62-66. Rosekind, M. R., D. F. Neri, and D. F. Dinges. 1997. From laboratory to flightdeck: Promoting operational alertness. Paper read at Proceedings: The Royal Aeronautical Society’s Sym- posium on Fatigue and Duty Time Limitations—An International Review, London, UK. Sack, R. L., D. Auckley, R. R. Auger, M. A. Carskadon, K. P. Wright, M. V. Vitiello, and I. Zhdanova. 2007. Circadian rhythm sleep disorders: Part 1, Basic principles, shift work and jet lag disorders. Sleep 30(11):1460-1483. SAFER Task Force. 2007. Sleep, alertness, and fatigue in residency. http://www.aasmnet. org/store/product/details.aspx?pid=116 (accessed June 1, 2007).

OCR for page 217
0 RESIDENT DUTY HOURS Schweitzer, P. K., A. C. Randazzo, K. Stone, M. Erman, and J. K. Walsh. 2006. Laboratory and field studies of naps and caffeine as practical countermeasures for sleep-wake problems associated with night work. Sleep 29(1):39-50. Scott, L. D., A. E. Rogers, W. T. Hwang, and Y. Zhang. 2006. Effects of critical care nurses’ work hours on vigilance and patients’ safety. American Journal of Critical Care 15(1):30-37. Smith-Coggins, R., S. K. Howard, D. T. Mac, C. Wang, S. Kwan, M. R. Rosekind, Y. Sowb, R. Ballise, J. Levis, and D. M. Gaba. 2006. Improving alertness and performance in emer- gency department physicians and nurses: The use of planned naps. Annals of Emergency Medicine 48(5):596-604. Stampi, C., ed. 1992. Why we nap. Evolution, chronobiology, and functions of polyphasic and ultrashort sleep. Boston: Birkhäuser. Stickgold, R. 2005. Sleep-dependent memory consolidation. Nature 437(7063):1272-1278. Stickgold, R., L. James, and J. A. Hobson. 2000. Visual discrimination learning requires sleep after training. Nature Neuroscience 3(12):1237-1238. Strogatz, S. H., R. E. Kronauer, and C. A. Czeisler. 1986. Circadian regulation dominates homeostatic control of sleep length and prior wake length in humans. Sleep 9(2): 353-364. ———. 1987. Circadian pacemaker interferes with sleep onset at specific times each day—Role in insomnia. American Journal of Physiology 253(1):R172-R178. Takahashi, M., H. Fukuda, K. Miki, T. Haratani, L. Kurabayashi, N. Hisanaga, H. Arito, H. Takahashi, M. Egoshi, and M. Sakurai. 1999. Shift work-related problems in 16-h night shift nurses. (2): Effects on subjective symptoms, physical activity, heart rate, and sleep. Industrial Health 37(2):228-236. Takeyama, H., T. Kubo, and T. Itani. 2005. The nighttime nap strategies for improving night shift work in workplace. Industrial Health 43(1):24-29. Tassi, P., and A. Muzet. 2000. Sleep inertia. Sleep Medicine Reviews 4(4):341-353. Thomas, M., H. Sing, G. Belenky, H. Holcomb, H. Mayberg, R. Dannals, H. Wagner, D. Thorne, K. Popp, L. Rowland, A. Welsh, S. Balwinski, and D. Redmond. 2000. Neural basis of alertness and cognitive performance impairments during sleepiness. I. Effects of 24 h of sleep deprivation on waking human regional brain activity. Journal of Sleep Research 9(4):335-352. Torsvall, L., and T. Akerstedt. 1988. Disturbed sleep while being on-call—An EEG study of ships engineers. Sleep 11(1):35-38. Uchal, M., J. Tjugum, E. Martinsen, X. G. Qiu, and R. Bergamaschi. 2005. The impact of sleep deprivation on product quality and procedure effectiveness in a laparoscopic physical sim- ulator: A randomized controlled trial. American Journal of Surgery 189(6):753-757. Van Dongen, H. P. A. 2006. Shift work and inter-individual differences in sleep and sleepiness. Chronobiology International 23(6):1139-1147. Van Dongen, H. P. A., and D. F. Dinges. 2005. Circadian rhythm in sleepiness, alertness and performance. In Principles and practice of sleep medicine. 4th ed., edited by M. H. Kryger, T. Roth, and W. C. Dement. Philadelphia, PA: W. B. Saunders. Pp. 435-443. Van Dongen, H. P. A., N. J. Price, J. M. Mullington, M. P. Szuba, S. C. Kapoor, and D. F. Dinges. 2001. Caffeine eliminates psychomotor vigilance deficits from sleep inertia. Sleep 24(7):813-819. Van Dongen, H. P., G. Maislin, J. M. Mullington, and D. F. Dinges. 2003. The cumulative cost of additional wakefulness: Dose-response effects on neurobehavioral functions and sleep physiology from chronic sleep restriction and total sleep deprivation. Sleep 26(2):117-126.

OCR for page 217
 STRATEGIES TO REDUCE FATIGUE RISK Van Dongen, H. P., M. D. Baynard, G. Maislin, and D. F. Dinges. 2004. Systematic interindi- vidual differences in neurobehavioral impairment from sleep loss: Evidence of trait-like differential vulnerability. Sleep 27(3):423-433. Van Dongen, H. P. A., C. G. Mott, J. K. Huang, D. J. Mollicone, F. D. McKenzie, and D. F. Dinges. 2007. Optimization of biomathematical model predictions for cognitive perfor- mance impairment in individuals: Accounting for unknown traits and uncertain states in homeostatic and circadian processes. Sleep 30(9):1129-1143. Veasey, S., R. Rosen, B. Barzansky, I. Rosen, and J. Owens. 2002. Sleep loss and fatigue in residency training: A reappraisal. JAMA 288(9):1116-1124. Venkatraman, V., Y. M. L. Chuah, S. A. Huettel, and M. W. L. Chee. 2007. Sleep deprivation elevates expectation of gains and attenuates response to losses following risky decisions. Sleep 30(5):603-609. Viola, A. U., S. N. Archer, L. M. James, J. A. Groeger, J. C. Y. Lo, D. Skene, M. von Schantz, and D. J. Dijk. 2007. PER3 polymorphism predicts sleep structure and waking perfor- mance. Current Biology 17:1-6. Walker, M. P., and R. Stickgold. 2006. Annual review of psychology. Sleep, Memory, and Plasticity 57:139-166. Weinger, M. B., and S. Ancoli-Israel. 2002. Sleep deprivation and clinical performance. JAMA 287(8):955-957. Wesensten, N., T. J. Balkin, and G. Belenky. 1999. Does sleep fragmentation impact recupera- tion? A review and reanalysis. Journal of Sleep Research 8(4):237-245. Williamson, A. M., and A.-M. Feyer. 2000. Moderate sleep deprivation produces impairments in cognitive and motor performance equivalent to legally prescribed levels of alcohol intoxication. Occupational and Environmental Medicine 57:649-655. Wu, J. C., J. C. Gillin, M. S. Buchsbaum, P. Chen, D. B. Keator, N. K. Wu, L. A. Darnall, J. H. Fallon, and W. E. Bunney. 2006. Frontal lobe metabolic decreases with sleep deprivation not totally reversed by recovery sleep. Neuropsychopharmacology 31(12):2783-2792.

OCR for page 217