Click for next page ( 36


The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement



Below are the first 10 and last 10 pages of uncorrected machine-read text (when available) of this chapter, followed by the top 30 algorithmically extracted key phrases from the chapter as a whole.
Intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text on the opening pages of each chapter. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

Do not use for reproduction, copying, pasting, or reading; exclusively for search engines.

OCR for page 35
3 Improving the Learning Experience Changes are needed in the undergraduate experience in agriculture. The changes include new curricula and content, but it will also be vital to improve how learning and teaching occur. This chapter will describe aspects of teaching and learning that are in need of reform, with a focus on the dis- ciplines within food and agriculture. It therefore serves as context and back- ground for readers who may not be familiar with the research on teaching and learning. The committee hopes that implementation of these ideas will help to both enhance the relevance of undergraduate education and retain students in agriculture. The chapter also provides a number of examples of research-based teaching strategies and discusses ways to raise the profile and impact of high-quality teaching within institutions and disciplines. Interested readers are encouraged to consult some of the many excellent reports on undergraduate teaching and learning that have been published in the last several years (e.g., AAAS 2004; Boyer Commission 1998; NRC 1996a, 1997, 1999c, 2003abc; Seymour and Hewitt 2000; Tobias 1992). As throughout most of higher education, teaching in agriculture is strongly influenced by the skills and motivation of the faculty. Most teaching is good, but all teaching can be improved. Effective teaching in higher education incorporates pedagogical strate- gies that create hospitable classroom climates supporting diverse learning processes and cultural understanding. The traditional approach to college- level instruction—especially in science, technology, engineering, agriculture, and mathematics disciplines—has historically been lecture-based delivery; as discussed below, the passive lecture format may not be as effective as desired in promoting student learning. Tutorials, laboratories, field-based learning experiences, problem-based learning, and other models can be 

OCR for page 35
 Transforming Agricultural Education for a Changing World especially effective in reaching students.1 It should be noted, however, that hands-on activities are not always “minds-on.” Effective educational activi- ties require planning and structure to support student learning and achieve learning objectives. Most higher-education faculty members arrive at their teaching positions after earning research doctorates. Few receive any formal training in how to be effective teachers or are exposed to pedagogy, the science of teach- ing. In fact, when thrust into the classroom, most faculty members teach the way they were taught during their own student experiences—which, for most, is almost exclusively lecture-based—despite research demonstrating that interactive engagement is more effective in enhancing student learning. It is not that faculty are unwilling to use research-based methods; rather, few have had the opportunity to expand their repertoire with new teaching techniques and tools or to learn about the need to provide more student- centered learning environments. The committee applauds the work of a number of professional societies and journals that are committed to agricultural and undergraduate education (several of which are listed in Box 3-1). In drawing attention to the chal- lenges and opportunities in agricultural education, the committee hopes that the community will call upon these organizations, joining as members, attending their meetings, publishing in their journals, and benefiting from their many years of scholarship. Since the 1991 conference on undergraduate education in agriculture (compiled in NRC 1992), there have been important advances in the sci- ence of learning. The National Research Council volumes titled How People Learn (NRC 1999ab, 2005b) provide an excellent summary of what has been learned from education, cognitive science, psychology, and related fields and how to apply it to classroom practice (see Box 3-2). The National Research Council’s 2003 report on undergraduate teaching in the STEM disciplines (NRC 2003b)—science, technology, engineering, and mathematics—provides an excellent overview of the concepts that influ- ence learning and synthesizes them into seven principles that may be useful for universities in thinking about reforming classes and curricula: • Learning for understanding is facilitated when new knowledge and existing knowledge are structured around the major concepts and principles of the discipline. 1For a recent discussion of student laboratory experiences with application to both under- graduate and high-school laboratories, see NRC (2005a).

OCR for page 35
Improing the Learning Experience  BOX 3-1 Selected Resources for Undergraduate Education in Agriculture Professional societies and associations: • American Association for Agricultural Education: • Association for International Agricultural and Extension Education: • National Association of Agricultural Educators: • The National Council for Agricultural Education: • National Farm & Ranch Business Management Education Association: • National Postsecondary Agricultural Student Organization: • National Young Farmer Educational Association: • North American Colleges and Teachers of Agriculture: In addition, many disciplinary societies have sections and committees dedicated to issues of education, a number of whom have developed extensive resources and programs. Journals: • CBE–Life Sciences Education: • Community College Journal of Research and Practice • Journal of Agricultural Education: • Journal of Career and Technical Education: • Journal of Extension: • Journal of International Agricultural and Extension Education: • Journal of Natural Resources and Life Science Education: • NACTA Journal: • Learners use what they already know to construct new under- standing. • Learning is facilitated by the use of metacognitive strategies that identify, monitor, and regulate cognitive processes. • Learners have different strategies, approaches, patterns of abilities, and learning styles that are a function of the interaction between their heredity and their prior experiences.

OCR for page 35
 Transforming Agricultural Education for a Changing World BOX 3-2 How People Learn The National Research Council reports How People Learn (NRC 1999ab, 2005b) reveal several principles that can help to guide instruction: • New knowledge is built on a foundation of existing knowledge and experi- ence. Everyday conceptions are resilient and must be actively challenged and engaged to support conceptual change. • Learning for understanding requires a deep foundation of knowledge, un- derstanding facts and ideas in the context of a conceptual framework, and organiz- ing knowledge for effective retrieval and use. • Metacognitive strategies help students to learn and take control of their own learning. These strategies—such as predicting outcomes, explaining to oneself, and noting failures of comprehension—can be taught effectively in the context of subject matter. Those principles suggest that it is important for faculty to know the common conceptions and misconceptions that students bring to a topic, to directly engage students in confronting those conceptions, to use formative assessment to monitor student thinking, and to adapt teaching based upon the assessment. They also show the importance of determining the core concepts that organize a discipline, of structuring topics to support conceptual understanding, and of paying explicit attention to reflective assessment. Summit presentation: M. Suzanne Donovan, Program Director, Strategic Educa- tion Research Partnership Institute; Study Director, How People Learn, National Research Council • Learners’ motivation to learn and their sense of self affect what is learned, how much is learned, and how much effort will be put into the learning process. • The practices and activities in which people engage while learning shape what is learned. • Learning is enhanced by socially supported interactions. Once curricula are designed and implemented, the path to educa- tion reform is far from complete. One especially important component is assessment, which enables an instructor or an institution to determine whether a particular activity, course, or major has been effective in meet- ing its learning goals. How else is it possible to determine whether students have learned what is being taught? NRC (2003b) provides an overview of

OCR for page 35
Improing the Learning Experience  research on effective assessment of student learning that may be helpful to institutions and faculty members. The document provides a wealth of information beyond the several points mentioned here, but some elements bear highlighting: • Multiple assessment measures provide a more robust picture of what a person has learned. • Educational assessment must be aligned with curriculum and instruc- tion if it is to support learning. • Assessment practices should extend beyond emphasis on skills and discrete bits of knowledge to encompass more complex aspects of student achievement. • Assessment should provide timely and informative feedback to stu- dents on their learning to inform the practice of a skill and influence effective and efficient acquisition. • Assessment must be designed from the beginning of the instruc- tional process to ensure that the desired type of information is available for assessment. • For assessment to be effective, students must understand and share the goals for learning that are assessed. The scholarship of teaching and learning has emerged as an important area of focus in higher education and has itself become a subject of research, following the impetus provided by Boyer (1990). That has led to academic study of and research on the most effective methods of teaching and even to the creation of subdisciplines on discipline-based education research in several fields. But the research base can help in the improvement of teach- ing and learning only if mechanisms that facilitate faculty implementation of the results of the research are put into place. Effective teaching and learning have become even more important as the student body has become more diverse, but effective teaching has benefits for all students. Students have different learning styles and different ways of assimilating information, and using a “one size fits all” approach in any classroom is not likely to meet with success. Moreover, the increased diversity of undergraduate classrooms helps to increase the variety of view- points and experiences in a way that benefits all. University faculty facilitate learning for greater numbers of students if they also provide a diversity of experiences in their classrooms. As elementary and secondary education experiences become increasingly collaborative, students are primed for this type of interaction when they reach college.

OCR for page 35
0 Transforming Agricultural Education for a Changing World SkILLS DEvELOPMENT As is discussed throughout this report, graduates need a growing set of skills and competences to succeed in today’s professional world. While con- tent knowledge and technical skills will remain important, 21st-century stu- dents also need transferrable skills that will be useful in any career. Although agriculture graduates are not alone in needing these skills, the qualities that make agriculture colleges unique (see Chapter 1) make it especially appropriate that agriculture leads the way. These skills should be integrated throughout a curriculum and other student experiences rather than taught in separate courses. In fact, many of the strategies for teaching and learning discussed throughout this chapter can provide opportunities for develop- ing these skills. Moreover, necessary experiences should be continual and extended over courses at all levels to allow additional achievement and growth throughout an undergraduate career. Departments and colleges are encouraged to conduct explicit planning to define how the skills will be incorporated into their academic offerings and how student achievement in these areas will be assessed. Among the competences that students should develop are teamwork and working in diverse communities, working across disciplines, communica- tion, critical thinking and analysis, ethical decision-making, and leadership and management. Those qualities are discussed briefly below. Teamwork and Working in Diverse Communities It is increasingly recognized that the challenges of the future will require the participation of many people working together in common pursuits. Yet college students rarely have the opportunity to engage in team-based activities as part of their academic work. Although many institutions offer collaborative activities (such as lab partners), they are generally intended more to extend resources than to afford educational experience. The committee believes that students should be provided with opportunities to work together both in and outside the classroom, to interact with and depend on people with different backgrounds, and to work on projects that will lead to better results than any student could have obtained alone. It will be especially important for students to gain experience in working with those who bring different backgrounds, skills, and perspectives. The workplaces of the future will be far more diverse than those of the past; students should be encouraged to gain multicultural awareness and to be comfortable in working with people of varied ages, ethnicities, and nationalities and with varied work styles.

OCR for page 35
Improing the Learning Experience  Working across Disciplines Closely related to working with others is the ability to work and speak across traditional disciplinary boundaries. Employers need their personnel not only to interact within disciplines but to bring expertise from different fields together to solve problems of common interest. As detailed in reports about interdisciplinary research and training (e.g., COSEPUP 2004), indi- viduals in different disciplines often have trouble even speaking the same language. Agriculture colleges can and should help to prepare their students to speak not only to experts in their own field but more broadly with those in other fields and with the general public. Communication College graduates need excellent written and oral communication skills to work together, to speak to diverse audiences, and to communicate their knowledge and expertise more widely. Universities should provide all stu- dents with numerous opportunities to write and speak about a variety of topics to audiences that extend beyond their classmates. Students should be able to speak to those from other fields, from other countries, and from other sectors. Students should receive guidance and instruction by appropriate experts so that their communication skills improve. Peer review is especially encouraged: students should develop the skills and comfort not only to read and write their own work but to observe and critique that of others. Critical Thinking and Analysis Employers need workers who can make good decisions even when relying on data that are incomplete or even contradictory. Few academic institutions provide explicit training in critical thinking and analysis, and few classroom experiences challenge students in this regard. Moreover, mathematical analysis is often not incorporated into classes beyond a very basic level, and students have few opportunities to engage in quantitative reasoning. For example, students are rarely presented with real data or asked to suggest a strategy when the data do not point to a single “correct” answer. Textbook examples often downplay confounding data and simplify scenarios. Even laboratory and field experiences may involve some means of data cleaning so that students will be able to draw the “correct” inferences. The natural environment can make pedagogical activities more difficult, but it is vital that students have the opportunity to engage with real-world

OCR for page 35
 Transforming Agricultural Education for a Changing World systems and to be forced to evaluate disparate data; they should be asked to make decisions on the basis of these data and to explain and defend their choices. Ethical Decision-Making Closely related to critical thinking and analysis is the need for students to make ethical decisions. That includes weighing sometimes contradictory aspects of disparate data and balancing competing interests. Professionals in all fields are asked to make tradeoffs all the time, and students need oppor- tunities to hone their decision-making skills when they have appropriate guidance and the decisions are less critical. That type of thinking can easily be incorporated into classroom activities and assignments. For example, students could be asked to assess the risks and benefits associated with various practices to balance concerns coming from scientific, economic, environmental, and other arenas. Leadership, Management, and Business Skills that complement working in teams are motivating others and managing complex tasks, teams, and budgets. Students are almost never provided with formal opportunities to develop leadership and management skills. Many students assume leadership roles in extracurricular activities, but they are rarely given guidance on how to be an effective leader or manager or how to develop and work with budgets. Those skills are essen- tial for surviving and thriving in the professional world, and the committee encourages institutions to build opportunities for students to hone them as part of their formal and informal undergraduate preparation. Closely coupled are facilitation and conflict resolution skills, which will enable teams and groups to work together effectively and to respond to challenges as they arise. Institutions should also look for opportunities to instill basic business and financial skills in their students. CASE STUDIES AND PROBLEM-BASED LEARNING Food and agriculture provide numerous real-world examples that can be brought into the classroom and used to enhance student learning, provid- ing opportunities for students to practice the variety of transferrable skills described above. Case studies and problem-based learning provide ideal opportunities for students to work together in diverse teams, to consolidate

OCR for page 35
Improing the Learning Experience  information from a variety of disciplines, to communicate in both oral and written forms, to analyze data and evaluate evidence, and demonstrate leadership skills. Problems taken from, or at least based on, actual experiences provide context and relevance to students (Capon and Kuhn 2004; Gijbels et al. 2005). Faculty can use examples from their own research, industry con- tacts and community organizations can propose challenges for courses, and extension activities can suggest issues of concern in a given state (see Chapter 5 for a discussion of the role of outreach, extension, and industry connection in fostering undergraduate education). Those types of cases and problems also provide opportunities for stu- dents to learn by doing. They may even be able to contribute to solutions to the real-world problems that they are given. For example, one of the posters presented at the summit described a capstone experience at California Polytechnic State University that has students working on real problems of commercial interest (Box 3-3). Case studies and problem-based learning can help students to understand why academic knowledge matters. BOX 3-3 Learning by Doing at California Polytechnic State University Many agriculture colleges stress a “learn by doing” pedagogy designed to better prepare students and allow them to demonstrate competency. California Polytechnic State University in San Luis Obispo has had experiential learning as a trademark for over 100 years, with ample opportunities for students to incorpo- rate internships, laboratory classes, and capstone senior thesis projects into their curriculum. An “Enterprise Project” option gives students access to learning in the context of commercial projects in livestock, fruit, vegetable, and honey production. After they have completed coursework on the topic, students are given responsibil- ity in one of the commercial enterprise project areas under the supervision of a faculty member. The goal of the project is to be profitable and for students to gain credit, practical experience, and potentially a share of the profit. Additional benefits are a stronger work ethic, sense of accomplishment, experience in teamwork, analysis, synthesis, and assessment. Poster presented at Summit: Jonathon L. Beckett, Lynn E. Moody, Mary A. Whiteford, and Mary E. Pedersen. “Learn by Doing Pedagogy in Agriculture through Enter- prise Projects.”

OCR for page 35
 Transforming Agricultural Education for a Changing World SERvICE LEARNING AND COMMUNITy ENGAGEMENT Agriculture lends itself to what has been termed “service learning,” in which students learn and receive academic credit for participation in activities that meet community needs (Astin et al. 2000; Battistoni 2001; Gelmon et al. 2001).2 One could see service learning as the intersection of community service and academic study. By drawing on scholarship in the natural and social sciences, civic engagement helps to make content knowledge come alive and allows students to contribute to the needs of their community. Service learning also helps to connect the university with the community. Testifying to the importance of recent developments in academic–community interactions, the Carnegie Foundation for the Advancement of Teaching has established an elective classification in community engagement: Community Engagement describes the collaboration between institutions of higher education and their larger communities (local, regional/state, national, global) for the mutually beneficial exchange of knowledge and resources in a context of partnership and reciprocity.3 Particular elements of the Carnegie classification include the engage- ment of faculty, students, and community in mutually beneficial and respect- ful collaboration that addresses community needs, deepens student learning, enriches scholarship, and enhances community well-being. Such activities can focus on outreach—applying institutional resources for community use—or partnership—in which collaborative interactions are common. These are some of the same elements that the committee highlights as inte- gral to successful partnerships in Chapter 5. Community engagement and service learning are natural outgrowths of many of the best practices discussed throughout this report. Because agriculture encompasses many areas of study and application with obvious community connections, the committee hopes that agriculture colleges will take advantage of opportunities for students to engage with their communi- ties and receive academic credit for service learning. Several institutions have taken substantial steps to incorporate service learning throughout their campuses (see Box 3-4 for one example). 2Campus Compact serves as a clearinghouse for engaging students in service learning. See for more information. 3See for more information.

OCR for page 35
Improing the Learning Experience  BOX 3-4 Center for Excellence in Curricular Engagement at North Carolina State University North Carolina State University (NCSU) established a center devoted to service learning and curricular engagement in 2007, integrating the institution’s land-grant mission with a commitment to educational innovation and leadership development. The NCSU Center for Excellence in Curricular Engagement hopes to expand community-engaged teaching, learning, and scholarship at the university; col- laborate with other institutions to advance curricular engagement throughout North Carolina; and establish NCSU as a leader in curricular engagement. The center offers consultation and development opportunities for faculty and workshops for all members of the university community, promotes the scholarship of teaching and learning on campus and beyond, and partners with campus- and community- based organizations to enhance and create opportunities for community-engaged learning. Additional information about the center is available at . COOPERATIvE AND ACTIvE LEARNING Cooperative learning began in elementary schools in the late 1960s largely through the research and efforts of Robert Slavin, Elizabeth Cohen, Spencer Kagan, and David and Roger Johnson. As a result of recognition that cooperative learning is an effective teaching and learning strategy for higher education, it appeared on the college instruction scene in the 1990s. Cooperative learning is more than just group work; it incorporates several elements: positive interdependence, face-to-face interaction, indi- vidual accountability, interpersonal skills, and group processing (Johnson and Johnson 1989; Johnson et al. 1991; McNeill and Payne 1996; McNeal and D’Avanzo 1997; Michaelsen et al. 2002). Cooperative learning often involves specially prepared lessons in which well-formed groups approach questions that are designed for teamwork. In one example of this type of cooperative learning, Beichner et al. (1999) have pioneered the SCALE-UP project, in which classes of up to 100 students are taught by dividing the students into small groups whose members work collaboratively with each other and with other groups in classrooms redesigned for collaborative work.4 Such studio classrooms make 4See for more information about SCALE-UP.

OCR for page 35
 Transforming Agricultural Education for a Changing World to achieve those aims. For example, the National Science Foundation (NSF) sponsors many undergraduate research experiences by providing supplements to NSF-funded research awards made to individual investigators (the agency also provides funding for dedicated programs that offer research experiences for undergraduates). Agencies can encourage the development of educational activities that leverage the support already provided to researchers. To that end, one of the criteria used by NSF in making awards is the “broader-impacts criterion,” which includes contributions to teaching and learning, broadening the participation of underrepresented groups, enhancing the infrastructure for research and education, disseminating results broadly, and providing societal benefits.10 Those approaches may serve as models for other agencies and private sponsors to think about ways to encourage the development of best practices in teaching and learning with relatively modest investments. When institutional grants and other funds are available, the committee hopes that deans, department chairs, and other administrators take advantage of the opportunity to support and encourage such goals as high-quality teach- ing, active and service learning, extension and outreach, and international experiences. Although new and external funding will certainly help institutions in effecting change, the committee strongly argues that institutions need to take the necessary steps even if additional funding is not available. Institutional priorities will need to emphasize undergraduate education, and universities may need to make tough decisions about redirecting support from other programs. ADOPTION OF EFFECTIvE TEACHING METHODS Despite decades of research demonstrating the effectiveness of teaching methods, including active student engagement, adoption by individual fac- ulty has been slow. That suggests that one of the most important challenge in reforming teaching and learning is not basic knowledge of what works but putting the information in the hands of faculty, providing the necessary infrastructure, and providing the appropriate incentives for faculty to imple- ment the methods. Most faculty are not aware of the research on teaching and learning, because it is not a formal part of most graduate training. They enter profes- 10See for examples of activities that are responsive to NSF’s broader-impacts criterion.

OCR for page 35
Improing the Learning Experience  sorships without much pedagogical knowledge and often revert to teach- ing how they have been taught, which often means that undergraduate classes—and especially those at the introductory level—tend to be lecture- based passive environments. As will be discussed below, faculty develop- ment can provide a mechanism for enhancing knowledge of research in teaching and learning. Although it is important, simply telling faculty about education research is unlikely to be sufficient to effect change. Lack of information is only one of the barriers to the implementation of research-based teaching methods. For example, Henderson and Dancy (2007) found a number of situational barriers that limit education reform, including student attitudes and prepara- tion, expectations of content coverage, limited instructor time, departmental norms, student resistance, class size, classroom layout, and structure of instructional time. Those barriers present an important challenge that will need to be addressed. Even bringing the challenges into the open can have a powerful effect in encouraging faculty to overcome them. As one mecha- nism, centers for teaching and learning could offer faculty development opportunities and discussions in which faculty can work together. Provid- ing opportunities for science faculty to interact and work more closely with education researchers also appears to help in implementation (Henderson and Dancy 2008). ROLE OF GRADUATE EDUCATION This report is focused on undergraduate education, but graduate students play an important role as well. Graduate students serve as teaching assistants and often have more contact with undergraduates than do members of the faculty. They serve as mentors in research and teaching laboratories. They have viewpoints and experiences that can be helpful in curriculum develop- ment and are often less confined to a single discipline or field of study than are faculty. Perhaps most important, graduate students—and postdoctoral researchers—are the faculty of the future. Therefore, engaging them in con- versation about the reform of undergraduate education while they are still students and trainees will pay off for years to come. And it will make those graduate students and postdocs more valuable on the job market if they can demonstrate depth in their thinking about teaching and learning (see Box 3-7 for an example of a program designed to help graduate students to be effec- tive teachers).

OCR for page 35
 Transforming Agricultural Education for a Changing World BOX 3-7 Enhancing Graduate Training in Teaching and Learning: Delta Program at the University of Wisconsin The Center for the Integration of Research, Teaching, and Learning (CIRTL) at the University of Wisconsin–Madison has a goal of developing a national faculty in the natural and social sciences, engineering, and mathematics with the knowledge and experience to forge successful professional careers that include implementing and advancing effective teaching and learning practices. Building on a prototype at UW–Madison, CIRTL’s Delta Program now connects six research universities in a curriculum of graduate courses, intergenerational small-group programs, and internships embedded within an interdisciplinary learning community. Every facet of Delta is designed around models familiar to researchers in these disciplines. For example, the courses are project-based, and require students to define a learning problem; understand their student audi- ence; explore the literature for prior knowledge; hypothesize, design, and imple- ment a solution; and acquire and analyze data to measure learning outcomes. Delta internships are research assistantships in teaching, in which a graduate student or postdoctoral researcher partners with a faculty member to address a learning problem. Delta activities are also designed to provide each gradu- ate and postdoctoral participant with a portfolio, letters of recommendation, and presentations/publications in teaching and learning analogous to those in their disciplinary research curriculum vitae. Since 2003, more than 1,600 UW–Madison graduate students, postdoctoral researchers, staff, and faculty have participated in the Delta learning community. The Delta Program has enabled graduate students and others early in their careers to develop the skills and confidence they need to become creative, well- prepared professionals who will enter the national workforce with the ability to teach effectively and improve science education broadly. Additional information about CIRTL is available at ; informa- tion about the Delta Program is available at . CENTERS FOR TEACHING AND LEARNING A number of institutions have established centers dedicated to improving undergraduate instruction. Whether they are called centers for teaching excel- lence, centers for teaching and learning, or something else, they are typically staffed by education professionals who work with faculty, graduate teaching assistants, and others to improve undergraduate education (Singer 2002). Implementing several of the ideas discussed in this report might be best carried out by such centers. They already provide an existing infrastructure in a local setting, have resources and expertise to conduct workshops and

OCR for page 35
Improing the Learning Experience  other activities, and tend to have a campuswide reach. In addition, they can serve as a valuable resource to an institution by providing individual consultation and programming to those seeking to improve teaching on their campus. FACULTy DEvELOPMENT Implementing the changes that would promote effective teaching and learning in undergraduate agricultural education and support the success of a diverse student population will require adequate resources. Although support for academic research is often available to faculty from external and internal sources, few resources are available for teaching. Educational innovation may be relatively inexpensive, but it is not without some costs: faculty need resources to enhance their teaching, to develop new courses, or to learn new teaching techniques. Teaching assistants (TAs) can often be critical in enabling faculty to implement new teaching techniques, and their support can often be provided through instructional budgets. TAs not only help to take on time-consuming responsibilities, but involving TAs in educational innovation offers an excellent opportunity to provide graduate students and others with professional development experiences. Resources are also needed to allow faculty to keep up with the scholarship and practice of undergraduate education: support for books, journal subscriptions, society memberships, and participation in relevant meetings and conferences. Per- haps the scarcest resource for many faculty is time itself, and release time may be an appropriate investment in curriculum reform. Faculty development, in general, is essential for helping to prepare faculty to take advantage of the research on teaching and learning. Faculty development will have to be multifaceted to include both formal train- ing and support for participation in ongoing networks; it should occur at several levels and be conducted by a variety of communities. Universities have an obvious responsibility to ensure that their faculty are kept current with research on teaching and learning, new pedagogical techniques, and developments in instructional technology. Professional societies have an important role to play in supporting high-quality education in their disci- plines and can bring expertise in teaching and learning to individual fields of study. Funding agencies, accrediting bodies, and other national organi- zations can help to promote and support activities to convene faculty to discuss these issues and promote the scholarship of teaching and learning. Relatively inexpensive investments in such activities will pay dividends for years to come.

OCR for page 35
 Transforming Agricultural Education for a Changing World There are many models of faculty development, from individual work- shops to year-long sabbaticals focused on teaching and learning. It is likely that in-depth—but brief—experiences provide maximal benefit for a small investment of time or resources. For example, the National Academies has developed a week-long faculty-development institute for undergraduate faculty in the biological sciences with a particular focus on research uni- versities (see Box 3-8). Another type of model is a network of faculty dedi- cated to a common purpose, such as Project Kaleidoscope’s Faculty for the 21st Century network (see Box 3-9). BOX 3-8 National Academies Summer Institute on Undergraduate Education in Biology The authors of the 2003 National Research Council report Bio2010: Transforming Undergraduate Education for Future Research Biologists recognized the central role of faculty development in effecting changes in undergraduate education, and they devoted one of their eight recommendations to campus-level and national faculty development (NRC 2003a). As a direct result of that recommendation, the National Academies estab- lished the National Academies Summer Institute on Undergraduate Education with support from HHMI, the Research Corporation for Science Advancement, the Presidents’ Committee of the National Research Council, and the University of Wisconsin–Madison (Wood and Gentile 2003; Wood and Handelsman 2004; Pfund et al. 2009). The summer institute seeks to transform undergraduate biology education at research universities nationwide by improving classroom teaching and attracting diverse students to science. Teams of two or three faculty members, most of whom teach introductory courses, learn about and implement the themes of “scientific teaching” (Handelsman et al. 2004)—active learning, assessment, and diversity—during a week-long workshop dedicated to teaching and learning. Participants work together to develop materials and lessons that they agree to implement in their courses in the following year. The impact of the summer institute is far greater than the individual teaching materials; rather, it seeks to transform how individual faculty members view their teaching and, by extension, influence other members of their departments and their disciplines to make similar transformations (Pfund et al. 2009). Participants are named National Academies Education Fellows in the Life Sciences and are encouraged to become ambassadors for education reform on their campuses and throughout their professional communities. The aim is, therefore, to leverage a pro- gram that directly reaches 40 faculty per year—who themselves teach over 15,000 students per year—into one that reaches hundreds of thousands of students. Additional information about the Summer Institute is available at .

OCR for page 35
Improing the Learning Experience  BOX 3-9 Project Kaleidoscope Faculty for the 21st Century Since 1994, Project Kaleidoscope (PKAL) has been managing a national net- work of emerging leaders in undergraduate science, technology, engineering, and mathematics (STEM), known as Faculty for the 21st Century (F21). The network encourages faculty to become agents of change and visible leaders on their cam- puses and in their disciplines. The goal of the PKAL F21 network is to foster every F21 member’s capacity for leadership by providing opportunities to explore new ways of thinking about students, about science and technology, and about society. PKAL intends to build a supportive alliance among and between the F21 members and the affiliated net- work of current leaders in STEM education. The F21 network now includes more than 1,200 faculty at over 500 colleges and universities around the country. F21 members are nominated by senior administrators on their campuses, who must make a commitment to enhance the leadership capacities of their nomi- nees. The collaboration between PKAL and participating campuses is an essential ingredient of the F21 network in recognition that groups working together can accomplish more than those working in isolation. Additional information about the PKAL F21 network is available at . Summit Presentation: Jeanne Narum, Director, Project Kaleidoscope. The committee believes that institutions should include teaching-focused workshops and experiences as part of graduate education and postdoctoral training. Graduate students and postdoctoral scholars make up the next generation of faculty, and early intervention in their training can lead to faculty who are already familiar with education research and comfortable with student-centered pedagogies when they begin their faculty careers. One national effort that strives to prepare graduate students for careers at a variety of academic institutions with a variety of missions, student bodies, and faculty expectations is the Preparing Future Faculty (PFF) initiative.11 Individual PFF programs address the full scope of faculty responsibilities; provide multiple mentors to students, including mentors in teaching; and engage a cluster of diverse institutions so that students have opportunities to work with faculty and gain teaching experience in a variety of settings. 11See for more information about the PFF program.

OCR for page 35
0 Transforming Agricultural Education for a Changing World FACULTy REWARDS One of the greatest obstacles to the reform of teaching and learning cited at the Leadership Summit was the institutional reward structure, especially the criteria for promotion and tenure. A thorough review of institutional tenure-review policies is far beyond the scope of this report, but the com- mittee believes that the importance of the issue merits a brief discussion here.12 There was a strong feeling among participants in the summit that tenure criteria are strongly tilted toward faculty members’ research productivity and that too little attention is paid to teaching and service. Faculty, under- standably, are driven by what their employers value: in the current reward structure, this means research activities, especially being published and securing external grant support. Even though teaching and learning are at the heart of academic institutions, they rarely play a substantial role in the evaluation of faculty. In part, that is because of the perceived difficulty in measuring teaching quality objectively, but there are strategies for evaluating faculty teaching and student learning (NRC 2003b). Many institutions do offer some sort of teaching award, but some complain that such awards can be little more than popularity contests that reward entertaining or dynamic instructors. The competitions are often based solely on student evaluations and rarely consider measures of student learning. Moreover, an institution may give only a handful of the awards each year, leaving many excellent instructors without recognition or acknowledgment. Implementing high-quality educational practices and enhancing institu- tional rewards for teaching and learning will require renewed emphasis at all levels, including the top of an institution. When the driving force for the process flows from the president and provost, the attention of internal and external stakeholders can be focused on support and encouragement for teaching. Some of the changes that will be required are a refocusing of faculty hiring and evaluation to include consideration of learning outcomes, valuing the scholarship of teaching and learning in the promotion and tenure process, and adopting other strategies for honoring and supporting teaching. A number of ideas for rewarding undergraduate teaching and supporting student learning were offered at the Leadership Summit. Some institutions have created teaching tracks in which instructors are judged primarily on the basis of the quality of their teaching and that are separate from the 12For a more thorough discussion of institutional rewards for teaching, see, for example, NRC (2003b).

OCR for page 35
Improing the Learning Experience  research-track faculty that have been the standard. The positions sometimes have distinct titles, such as “professor of the practice of . . . .” In most of the cases discussed, however, the teaching track does not offer the possibility of tenure, and there are often limitations on involvement in faculty governance; this raised concerns about a two-tier system in which teaching faculty are relegated to a lower rank. Some institutions have established tenure-track faculty positions in discipline-based education, affording faculty the same opportunities and responsibilities as traditional research-focused faculty members. Those holding such positions are expected to conduct original research, publish in peer-reviewed publications, secure extramural funding, and become leaders in their fields; the only difference is that their research is focused on education. One institution participating in the summit had come to the conclu- sion that teaching should not be considered the indiidual responsibility of faculty members but the collectie responsibility of an entire department. That change in mindset helped to encourage an open discussion of teaching and learning at that institution instead of something that happened behind closed doors. The institution even decided to offer teaching awards to entire departments; in addition to public recognition, the award comes with a prize of unrestricted funds that the department can spend as it sees fit. Because such unrestricted funds are so uncommon at most institutions, this can be a powerful motivator for even a recalcitrant department to focus on teaching quality and student learning. Perhaps most interesting were institutions that had incorporated under- graduate teaching into their tenure criteria (see overview in Bush et al. 2006). One speaker described an extensive plan at the University of Wisconsin- Madison (UW–Madison) that pays attention to teaching in tenure consider- ation. As explained in Box 3-10, UW–Madison has developed a structure in which teaching can be a primary area of accomplishment for tenure consideration; it can also serve as a secondary area that is taken seriously for faculty who have research as their primary area of focus. Policies like those at UW–Madison can serve as models for other institutions in drafting similar criteria that give appropriate consideration to teaching. What may be more of a challenge, however, is getting universities to both adopt and enforce such policies. Some concern has been raised about the danger of creating a “caste system” in which some faculty concentrate on teaching and others are com- mitted mostly to research. Institutions that choose to pursue such a path will need to ensure that compensation, advancement, job security, and respect are provided equally to teachers and researchers.

OCR for page 35
 Transforming Agricultural Education for a Changing World BOX 3-10 Valuing Teaching for Tenure and Promotion at the University of Wisconsin–Madison The University of Wisconsin–Madison has taken steps to value undergraduate teaching in the criteria for granting tenure. As described by Caitilyn Allen, pro- fessor of plant pathology, who served as chair of the university-level tenure com- mittee in 2005–2006, UW–Madison made a commitment to incorporate a rigorous and fair evaluation of teaching for consideration of tenure. The university has established a culture that has the support of the administration; this means that department decisions based on teaching cannot be outweighed by concerns about external grant support. Tenure dossiers at UW–Madison must describe achievements in research, teaching, outreach (extension), and service; a candidate must show “excellence” in one and “significant accomplishment” in a second; any candidate with a teach- ing appointment is judged partly on the basis of teaching. Those seeking tenure primarily on the basis of teaching must demonstrate a national or international reputation that is demonstrated by scholarly work related to teaching. More com- monly, teaching is considered an important accomplishment to support a primary focus on research or extension. Among the metrics used to evaluate teaching are the following: • Numbers of courses and students taught, taking into consideration how many were new preparations and student mentoring outside class. • Student evaluations, including numerical ratings for each course, but also qualitative student evaluations for a selection of courses and exit interviews with a handful of randomly selected students from each course. Even if individual student responses are not always objective or fair, the collective wisdom of many students usually provides an accurate picture of an instructor. • Peer review, in which two faculty members observe two class sessions each semester and write an evaluation that is discussed with the junior faculty member. For those seeking tenure primarily on the basis of teaching, an indepen- dent committee of master teachers from outside the home department is brought in to assess the candidate’s teaching. • Evaluation of teaching materials, including a two-page statement of teach- ing philosophy and practice, new curriculum development (when relevant), and copies of original teaching materials, such as syllabi, assignments, examinations, and laboratory or field exercises. • Measures of the effect of the candidate’s teaching-related work beyond his or her own classroom, including peer-reviewed articles, textbooks, and other ped-

OCR for page 35
Improing the Learning Experience  agogical materials; presentations at regional, national, and international meetings; grants to develop courses or curricula or to conduct pedagogical research; and documentation that the candidate’s teaching activities have resulted in changed practices beyond the campus. • Letters from off-campus experts on teaching in the candidate’s field who review and assess the faculty member’s teaching dossier in the case of someone being considered primarily on the basis of teaching. In many ways, those measures are directly comparable with measures used for research productivity, so they should not be foreign to most faculty. Allen noted that the reviews are not pro forma but are taken seriously. There are examples of candidates with good external funding and substantial publica- tion records who failed to be promoted because of the absence of high-quality teaching. The university coupled the altered procedures with institutional resources to support faculty as teachers: partnering young faculty with master teachers and developing mentor committees, providing peer review and comments on teaching, offering workshops and symposia to generate ideas and build a culture of teach- ing, granting teaching leaves to assist in course development and revision, and awarding small grants for computers and software, memberships, subscriptions to teaching-oriented publications, and attendance at education-focused conferences. And it has taken steps to continue to value teaching after tenure, for example, by making it one criterion for annual merit salary adjustments, requiring sabbatical applications to include a justification for teaching development, nominating in- structors for teaching awards, and publicizing faculty teaching accomplishments. For additional information see the University of Wisconsin–Madison’s Guidelines for Recommendations for Promotion or Appointment to Tenure Rank in the Biologi- cal Sciences Division at . Summit Presentation: Caitilyn Allen, Professor of Plant Pathology, University of Wisconsin–Madison.

OCR for page 35
 Transforming Agricultural Education for a Changing World Support for teaching can also be incorporated into faculty hiring. Actions such as emphasizing and providing appropriate descriptions of teaching opportunities in position descriptions, asking for statements of teaching phi- losophy and experience as part of an application, discussing teaching and learning during interviews, asking candidates to conduct a sample class during a campus visit, and involving students in the campus visit can send a signal that teaching is valued and provide information that hiring committees can use in assessing a candidate’s teaching ability. Institutions could also consider devoting a portion of startup costs to education-related expenses; even a small amount of money can go a long way in emphasizing the importance of teaching and providing the impetus for faculty to learn more about effective teaching strategies or teaching materials. Those steps, if taken early, can help to reinforce attention to education that can last for an entire career. Steps to promote teaching in early-career faculty can enhance the syn- ergy between research and teaching that contributes both to more relevant teaching and to more innovative research. Such programs as NSF’s Faculty Early Career Development (CAREER) program13 and the HHMI Professors program14 help to bridge teaching and research and to support faculty members who excel in and integrate both. Institutions can and should also support the development of good teachers. As discussed above, faculty development is a vital component, but generally helping to build institutional capacity should be a goal. That can include discussions of teaching and learning during faculty meetings, hosting speakers on education as part of department seminar series, offer- ing certificate programs in undergraduate education for graduate students, designing new classroom spaces that support active learning, and providing opportunities for the development of new seminars and laboratories. Those steps, taken together, can foster a culture of excellence in under- graduate education in which faculty, staff, administrators, and students work together to improve teaching and learning. Faculty who receive training in evidence-based methods and materials can be more effective teachers and promote enhanced student learning. The ultimate outcome should be well-prepared students who have the motivation and confidence to pursue their interests and careers of choice. Using research-based methods and supporting instruction that fosters these goals will help our universities to be leaders in undergraduate education. 13See for more information about the NSF CAREER program. 14See for more information about the HHMI Professors program.