National Academies Press: OpenBook
Suggested Citation:"Front Matter." National Academy of Sciences, National Academy of Engineering, and National Research Council. 2010. Electricity from Renewable Resources: Status, Prospects, and Impediments. Washington, DC: The National Academies Press. doi: 10.17226/12619.
×

Electricity from Renewable Resources

STATUS, PROSPECTS, AND IMPEDIMENTS

America’s Energy Future Panel on Electricity from Renewable Resources

NATIONAL ACADEMY OF SCIENCES

NATIONAL ACADEMY OF ENGINEERING

NATIONAL RESEARCH COUNCIL OF THE NATIONAL ACADEMIES

THE NATIONAL ACADEMIES PRESS

Washington, D.C.
www.nap.edu

Suggested Citation:"Front Matter." National Academy of Sciences, National Academy of Engineering, and National Research Council. 2010. Electricity from Renewable Resources: Status, Prospects, and Impediments. Washington, DC: The National Academies Press. doi: 10.17226/12619.
×

THE NATIONAL ACADEMIES PRESS

500 Fifth Street, N.W. Washington, DC 20001

NOTICE: The project that is the subject of this report was approved by the Governing Board of the National Research Council, whose members are drawn from the councils of the National Academy of Sciences, the National Academy of Engineering, and the Institute of Medicine. The members of the panel responsible for the report were chosen for their special competences and with regard for appropriate balance.

Support for this project was provided by the Department of Energy under Grant Number DE-FG02-07-ER-15923 and by BP America, Dow Chemical Company Foundation, Fred Kavli and the Kavli Foundation, GE Energy, General Motors Corporation, Intel Corporation, and the W.M. Keck Foundation. Support was also provided by the Presidents’ Circle Communications Initiative of the National Academies and by the National Academy of Sciences through the following endowed funds created to perpetually support the work of the National Research Council: Thomas Lincoln Casey Fund, Arthur L. Day Fund, W.K. Kellogg Foundation Fund, George and Cynthia Mitchell Endowment for Sustainability Science, and Frank Press Fund for Dissemination and Outreach. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the organizations that provided support for the project.

International Standard Book Number-13: 978-0-309-13708-9

International Standard Book Number-10: 0-309-13708-X

Library of Congress Control Number: 2009938602

Available in limited supply and free of charge from:

Board on Energy and Environmental Systems

National Research Council

500 Fifth Street, N.W.

Keck W917

Washington, DC 20001

202-334-3344

Additional copies of this report are available from the

National Academies Press,

500 Fifth Street, N.W., Lockbox 285, Washington, DC 20055; (800) 624-6242 or (202) 334-3313 (in the Washington metropolitan area); Internet, http://www.nap.edu.

Copyright 2010 by the National Academy of Sciences. All rights reserved.

Printed on recycled stock

Printed in the United States of America

Suggested Citation:"Front Matter." National Academy of Sciences, National Academy of Engineering, and National Research Council. 2010. Electricity from Renewable Resources: Status, Prospects, and Impediments. Washington, DC: The National Academies Press. doi: 10.17226/12619.
×

THE NATIONAL ACADEMIES

Advisers to the Nation on Science, Engineering, and Medicine


The National Academy of Sciences is a private, nonprofit, self-perpetuating society of distinguished scholars engaged in scientific and engineering research, dedicated to the furtherance of science and technology and to their use for the general welfare. Upon the authority of the charter granted to it by the Congress in 1863, the Academy has a mandate that requires it to advise the federal government on scientific and technical matters. Dr. Ralph J. Cicerone is president of the National Academy of Sciences.


The National Academy of Engineering was established in 1964, under the charter of the National Academy of Sciences, as a parallel organization of outstanding engineers. It is autonomous in its administration and in the selection of its members, sharing with the National Academy of Sciences the responsibility for advising the federal government. The National Academy of Engineering also sponsors engineering programs aimed at meeting national needs, encourages education and research, and recognizes the superior achievements of engineers. Dr. Charles M. Vest is president of the National Academy of Engineering.


The Institute of Medicine was established in 1970 by the National Academy of Sciences to secure the services of eminent members of appropriate professions in the examination of policy matters pertaining to the health of the public. The Institute acts under the responsibility given to the National Academy of Sciences by its congressional charter to be an adviser to the federal government and, upon its own initiative, to identify issues of medical care, research, and education. Dr. Harvey V. Fineberg is president of the Institute of Medicine.


The National Research Council was organized by the National Academy of Sciences in 1916 to associate the broad community of science and technology with the Academy’s purposes of furthering knowledge and advising the federal government. Functioning in accordance with general policies determined by the Academy, the Council has become the principal operating agency of both the National Academy of Sciences and the National Academy of Engineering in providing services to the government, the public, and the scientific and engineering communities. The Council is administered jointly by both Academies and the Institute of Medicine. Dr. Ralph J. Cicerone and Dr. Charles M. Vest are chair and vice chair, respectively, of the National Research Council.


www.national-academies.org

Suggested Citation:"Front Matter." National Academy of Sciences, National Academy of Engineering, and National Research Council. 2010. Electricity from Renewable Resources: Status, Prospects, and Impediments. Washington, DC: The National Academies Press. doi: 10.17226/12619.
×

PANEL ON ELECTRICITY FROM RENEWABLE RESOURCES

LAWRENCE T. PAPAY,

NAE,1 Science Applications International Corporation (retired),

Chair

ALLEN J. BARD,

NAS,2 University of Texas, Austin,

Vice Chair

RAKESH AGRAWAL,

NAE, Purdue University

WILLIAM CHAMEIDES,

NAS, Duke University

JANE H. DAVIDSON,

University of Minnesota, Minneapolis

J. MICHAEL DAVIS,

Pacific Northwest National Laboratory

KELLY R. FLETCHER,

General Electric

CHARLES F. GAY,

Applied Materials, Inc.

CHARLES H. GOODMAN,

Southern Company (retired)

SOSSINA M. HAILE,

California Institute of Technology

NATHAN S. LEWIS,

California Institute of Technology

KAREN L. PALMER,

Resources for the Future

JEFFREY M. PETERSON,

New York State Energy Research and Development Authority

KARL R. RABAGO,

Austin Energy

CARL J. WEINBERG,

Pacific Gas and Electric Company (retired)

KURT E. YEAGER,

Galvin Electricity Initiative

America’s Energy Future Project Director

PETER D. BLAIR, Executive Director,

Division on Engineering and Physical Sciences

America’s Energy Future Project Manager

JAMES ZUCCHETTO, Director,

Board on Energy and Environmental Systems

Staff

K. JOHN HOLMES, Study Director

KATHERINE BITTNER, Senior Program Assistant (until July 2008)

LaNITA R. JONES, Program Associate

AMY HEE KIM, Christine Mirzayan Science and Technology Policy Graduate Fellow (until November 2008)

DOROTHY MILLER, Christine Mirzayan Science and Technology Policy Graduate Fellow (until August 2008)

JASON ORTEGO, Senior Program Assistant

STEPHANIE WOLAHAN, Christine Mirzayan Science and Technology Policy Graduate Fellow (until April 2009)

E. JONATHAN YANGER, Senior Program Assistant

1

NAE, National Academy of Engineering.

2

NAS, National Academy of Sciences.

Suggested Citation:"Front Matter." National Academy of Sciences, National Academy of Engineering, and National Research Council. 2010. Electricity from Renewable Resources: Status, Prospects, and Impediments. Washington, DC: The National Academies Press. doi: 10.17226/12619.
×

Foreword

Energy, which has always played a critical role in our country’s national security, economic prosperity, and environmental quality, has over the last two years been pushed to the forefront of national attention as a result of several factors:

  • World demand for energy has increased steadily, especially in developing nations. China, for example, saw an extended period (prior to the current worldwide economic recession) of double-digit annual increases in economic growth and energy consumption.

  • About 56 percent of the U.S. demand for oil is now met by depending on imports supplied by foreign sources, up from 40 percent in 1990.

  • The long-term reliability of traditional sources of energy, especially oil, remains uncertain in the face of political instability and limitations on resources.

  • Concerns are mounting about global climate change—a result, in large measure, of the fossil-fuel combustion that currently provides most of the world’s energy.

  • The volatility of energy prices has been unprecedented, climbing in mid-2008 to record levels and then dropping precipitously—in only a matter of months—in late 2008.

  • Today, investments in the energy infrastructure and its needed technologies are modest; many alternative energy sources are receiving insufficient attention; and the nation’s energy supply and distribution systems are increasingly vulnerable to natural disasters and acts of terrorism.

Suggested Citation:"Front Matter." National Academy of Sciences, National Academy of Engineering, and National Research Council. 2010. Electricity from Renewable Resources: Status, Prospects, and Impediments. Washington, DC: The National Academies Press. doi: 10.17226/12619.
×

All of these factors are affected to a great degree by the policies of government, both here and abroad, but even with the most enlightened policies the overall energy enterprise, like a massive ship, will be slow to change course. Its complex mix of scientific, technical, economic, social, and political elements means that the necessary transformational change in how we generate, supply, distribute, and use energy will be an immense undertaking, requiring decades to complete.

To stimulate and inform a constructive national dialogue about our energy future, the National Academy of Sciences and the National Academy of Engineering initiated in 2007 a major study, “America’s Energy Future: Technology Opportunities, Risks, and Tradeoffs.” The America’s Energy Future (AEF) project was initiated in anticipation of major legislative interest in energy policy in the U.S. Congress, and as the effort proceeded, it was endorsed by Senate Energy and Natural Resources Committee Chair Jeff Bingaman and former Ranking Member Pete Domenici.

The AEF project evaluates current contributions and the likely future impacts, including estimated costs, of existing and new energy technologies. It was planned to serve as a foundation for subsequent policy studies, at the academies and elsewhere, that will focus on energy research and development priorities, strategic energy technology development, and policy analysis.

The AEF project has produced a series of five reports, including this report on electricity from renewable resources, designed to inform key decisions as the nation begins this year a comprehensive examination of energy policy issues. Numerous studies conducted by diverse organizations have benefited the project, but many of those studies disagree about the potential of specific technologies, particularly those involving alternative sources of energy such as biomass, renewable resources for generation of electric power, advanced processes for generation from coal, and nuclear power. A key objective of the AEF series of reports is thus to help resolve conflicting analyses and to facilitate the charting of a new direction in the nation’s energy enterprise.

The AEF project, outlined in Appendix A, included a study committee and three panels that together have produced an extensive analysis of energy technology options for consideration in an ongoing national dialogue. A milestone in the project was the March 2008 “National Academies Summit on America’s Energy Future” at which principals of related recent studies provided input to the AEF study committee and helped to inform the panels’ deliberations. A report chronicling the event, The National Academies Summit on America’s Energy Future:

Suggested Citation:"Front Matter." National Academy of Sciences, National Academy of Engineering, and National Research Council. 2010. Electricity from Renewable Resources: Status, Prospects, and Impediments. Washington, DC: The National Academies Press. doi: 10.17226/12619.
×

Summary of a Meeting (Washington, D.C.: The National Academies Press), was published in October 2008.

The AEF project was generously supported by the W.M. Keck Foundation, Fred Kavli and the Kavli Foundation, Intel Corporation, Dow Chemical Company Foundation, General Motors Corporation, GE Energy, BP America, the U.S. Department of Energy, and our own academies.


Ralph J. Cicerone, President

National Academy of Sciences

Chair, National Research Council


Charles M. Vest, President

National Academy of Engineering

Vice Chair, National Research Council

Page viii Cite
Suggested Citation:"Front Matter." National Academy of Sciences, National Academy of Engineering, and National Research Council. 2010. Electricity from Renewable Resources: Status, Prospects, and Impediments. Washington, DC: The National Academies Press. doi: 10.17226/12619.
×

This page intentionally left blank.

Suggested Citation:"Front Matter." National Academy of Sciences, National Academy of Engineering, and National Research Council. 2010. Electricity from Renewable Resources: Status, Prospects, and Impediments. Washington, DC: The National Academies Press. doi: 10.17226/12619.
×

Preface

Shortly after the end of World War II, America’s electricity use rose rapidly with the introduction of labor-saving appliances and tools in the home, the electrification of manufacturing processes and assembly lines in factories, and the increased distribution of refrigerated and frozen foods into markets. This unprecedented growth averaged almost 7 percent annually on a compound basis for two decades. Helping to fuel this growth was the lower price of electricity made possible by economies of scale achieved as new plants were built.

With the close of the 1960s and the start of the 1970s, a series of events changed the face of electric power economics and structure, and this process continues today. The 1970 National Environmental Policy Act (NEPA) and the creation of the U.S. Environmental Protection Agency (EPA) signaled that environmental considerations would be required for every decision regarding expansion, construction, and operation of electric power systems and components. In 1973 the Organization of the Petroleum Exporting Countries’ oil embargo on the United States pointed out the vulnerability of the supply of transportation and boiler fuels. On the heels of the embargo, the United States experienced sharp increases in the cost of electricity due to the increased price of fuels. As the 1980s arrived, it became far more costly to construct large baseload power plants—particularly nuclear plants—because of lengthy approval processes and, post–Three Mile Island, reevaluation and redesign of nuclear safety systems.

The advent of deregulation due to legislation from 1978 onward meant that new project-financed independent power generators would look for least-cost options, which usually meant natural-gas-fired combined cycle power plants.

Based on a series of studies by the White House Office of Science and Technology Policy in the early 1970s, a few developers and utilities began to look into

Suggested Citation:"Front Matter." National Academy of Sciences, National Academy of Engineering, and National Research Council. 2010. Electricity from Renewable Resources: Status, Prospects, and Impediments. Washington, DC: The National Academies Press. doi: 10.17226/12619.
×

the possible use of renewable sources of energy for electric power production. In 1978, with the passage of the Public Utility Regulatory Policies Act (PURPA), small generation units and renewable resources were given special attention. The introduction of incentives such as tax credits at the federal and state level, as well as renewables portfolio standards (RPSs), spurred the development of renewable technologies. Growth in the 1980s and early 1990s was spotty, but the succeeding decade has seen a dramatic increase in renewable projects for electric power, particularly in wind and solar.

Today, there is a nexus of concerns about the U.S. energy portfolio: concerns about the environment, principally arising from climate change issues; concerns about energy security, principally due to the large amounts of oil imported from volatile parts of the world; and concerns about the economy, principally because of sharp increases in the price of oil, natural gas, and basic construction commodities. Collectively, these concerns beg the question of whether it is time for reevaluating and redesigning our electric infrastructure to extend energy efficiency to a much greater extent and use domestic, non-polluting, economically attractive energy sources. Thus, this provides the motivation for the continued but growing interest in renewable-based electric power.

Such concerns, consequently, have led to greater interest in renewable electric power. As part of the America’s Energy Future (AEF) project initiated by the National Academy of Sciences and the National Academy of Engineering (Appendix A), the National Research Council convened the Panel on Electricity from Renewable Resources (Appendix B) to examine all the factors that must be considered if any renewable energy resource is to become a significant contributor to meeting U.S. energy needs (see Box P.1 for the full statement of task). Presented in this stand-alone report, the work of this independent panel also serves as input to the larger AEF study outlined in Appendix A.

This report of the panel considers resource bases, technologies, economics, environmental impacts, and deployment issues and also presents selected deployment scenarios and their impacts. The major focus is the relative near term, from the present to the year 2020. The report also considers, in less detail, the mid-term between the years 2020 and 2035 and the long term beyond 2035. The goal of the report is to determine if renewable electric power technologies can make a significant (>20 percent) contribution to the total electric power needs of the United States and on what basis. It examines cost and deployment issues in detail.

This report is the result of considerable time and effort contributed by the panel members. Many issues needed a fair and honest discussion, and the panel members proved capable of the task. The panel in turn appreciates the dedicated

Suggested Citation:"Front Matter." National Academy of Sciences, National Academy of Engineering, and National Research Council. 2010. Electricity from Renewable Resources: Status, Prospects, and Impediments. Washington, DC: The National Academies Press. doi: 10.17226/12619.
×

BOX P.1

Task Statement for AEF Panel on Electricity from Renewable Resources

This panel will examine the technical potential for electric power generation with alternative sources such as wind, solar-photovoltaic, geothermal, solar-thermal, hydroelectric, and other renewable resources. The panel will also consider the broader energy applications of renewables, especially low-temperature solar applications that may reduce electricity demands. The panel will evaluate technologies based on their estimated times to initial commercial deployment and will provide the following information for each:

  • Initial deployment times <10 years: costs, performance, and impacts

  • 10 to 25 years: barriers, implications for costs, and R&D challenges/needs

  • >25 years: barriers and R&D challenges/needs, especially basic research needs.

The primary focus of the study will be on the quantitative characterization of technologies with initial deployment times <10 years. The panel will focus on those renewable resources that show the most promise for initial commercial development within a decade leading to substantial impact on the U.S. energy system, as well as consider the potential use of such technologies globally. In keeping with the charge to the overall scope of the America’s Energy Future Study Committee, the panel will not recommend policy choices, but it will assess the state of development of technologies. In addition to a principal focus on renewable energy technologies for power generation, the panel will address the challenges of incorporating such technologies into the power grid, as well as the potential of improvements in the national electricity grid that could enable better and more extensive use of wind, solar-thermal, solar photovoltaics, and other renewable technologies.

and committed staff of the National Research Council, including K. John Holmes, study director and senior program officer with the Board on Energy and Environmental Systems (BEES); Amy Hee Kim, Dorothy Miller, and Stephanie Wolahan, all Christine Mirzayan Science and Technology Policy Graduate Fellows; James Zucchetto, director of BEES; Jonathan Yanger and Jason Ortego, senior program assistants; and Peter Blair, executive director of the Division on Engineering and Physical Sciences. Richard Sweeney of Resources for the Future also contributed to the economic analysis in Chapter 4 in his role as an unpaid consultant to the panel.


Lawrence T. Papay, Chair
Panel on Electricity from Renewable Resources

Suggested Citation:"Front Matter." National Academy of Sciences, National Academy of Engineering, and National Research Council. 2010. Electricity from Renewable Resources: Status, Prospects, and Impediments. Washington, DC: The National Academies Press. doi: 10.17226/12619.
×

This page intentionally left blank.

Page xiii Cite
Suggested Citation:"Front Matter." National Academy of Sciences, National Academy of Engineering, and National Research Council. 2010. Electricity from Renewable Resources: Status, Prospects, and Impediments. Washington, DC: The National Academies Press. doi: 10.17226/12619.
×

Acknowledgment of Reviewers

This report has been reviewed in draft form by individuals chosen for their diverse perspectives and technical expertise, in accordance with procedures approved by the Report Review Committee of the National Research Council (NRC). The purpose of this independent review is to provide candid and critical comments that will assist the institution in making its published report as sound as possible and to ensure that the report meets institutional standards for objectivity, evidence, and responsiveness to the study charge. The review comments and draft manuscript remain confidential to protect the integrity of the deliberative process. We wish to thank the following individuals for their review of this report:

Douglas M. Chapin, MPR Associates,

Paul DeCotis, State of New York,

Sam Fleming, Consultant,

Clark Gellings, Electric Power Research Institute,

Roy Gordon, Harvard University,

Narain Hingorani, Consultant,

Robert Hirsch, Management Information Services, Inc.,

Lester B. Lave, Carnegie Mellon University,

Timothy Mount, Cornell University,

Pedro Pizzaro, Southern California Edison,

Norman R. Scott, Cornell University,

Terrance Surles, Hawaii Natural Energy Institute, and

Jefferson Tester, Massachusetts Institute of Technology.

Suggested Citation:"Front Matter." National Academy of Sciences, National Academy of Engineering, and National Research Council. 2010. Electricity from Renewable Resources: Status, Prospects, and Impediments. Washington, DC: The National Academies Press. doi: 10.17226/12619.
×

Although the reviewers listed above have provided many constructive comments and suggestions, they were not asked to endorse the conclusions or recommendations, nor did they see the final draft of the report before its release. The review of this report was overseen by Elisabeth M. Drake, Massachusetts Institute of Technology, and Robert A. Frosch, Harvard University. Appointed by the NRC, they were responsible for making certain that an independent examination of this report was carried out in accordance with institutional procedures and that all review comments were carefully considered. Responsibility for the final content of this report rests entirely with the authoring panel and the institution.

Suggested Citation:"Front Matter." National Academy of Sciences, National Academy of Engineering, and National Research Council. 2010. Electricity from Renewable Resources: Status, Prospects, and Impediments. Washington, DC: The National Academies Press. doi: 10.17226/12619.
×
Suggested Citation:"Front Matter." National Academy of Sciences, National Academy of Engineering, and National Research Council. 2010. Electricity from Renewable Resources: Status, Prospects, and Impediments. Washington, DC: The National Academies Press. doi: 10.17226/12619.
×
Page xvii Cite
Suggested Citation:"Front Matter." National Academy of Sciences, National Academy of Engineering, and National Research Council. 2010. Electricity from Renewable Resources: Status, Prospects, and Impediments. Washington, DC: The National Academies Press. doi: 10.17226/12619.
×
Page xviii Cite
Suggested Citation:"Front Matter." National Academy of Sciences, National Academy of Engineering, and National Research Council. 2010. Electricity from Renewable Resources: Status, Prospects, and Impediments. Washington, DC: The National Academies Press. doi: 10.17226/12619.
×

This page intentionally left blank.

Suggested Citation:"Front Matter." National Academy of Sciences, National Academy of Engineering, and National Research Council. 2010. Electricity from Renewable Resources: Status, Prospects, and Impediments. Washington, DC: The National Academies Press. doi: 10.17226/12619.
×
Page R1
Suggested Citation:"Front Matter." National Academy of Sciences, National Academy of Engineering, and National Research Council. 2010. Electricity from Renewable Resources: Status, Prospects, and Impediments. Washington, DC: The National Academies Press. doi: 10.17226/12619.
×
Page R2
Suggested Citation:"Front Matter." National Academy of Sciences, National Academy of Engineering, and National Research Council. 2010. Electricity from Renewable Resources: Status, Prospects, and Impediments. Washington, DC: The National Academies Press. doi: 10.17226/12619.
×
Page R3
Suggested Citation:"Front Matter." National Academy of Sciences, National Academy of Engineering, and National Research Council. 2010. Electricity from Renewable Resources: Status, Prospects, and Impediments. Washington, DC: The National Academies Press. doi: 10.17226/12619.
×
Page R4
Suggested Citation:"Front Matter." National Academy of Sciences, National Academy of Engineering, and National Research Council. 2010. Electricity from Renewable Resources: Status, Prospects, and Impediments. Washington, DC: The National Academies Press. doi: 10.17226/12619.
×
Page R5
Suggested Citation:"Front Matter." National Academy of Sciences, National Academy of Engineering, and National Research Council. 2010. Electricity from Renewable Resources: Status, Prospects, and Impediments. Washington, DC: The National Academies Press. doi: 10.17226/12619.
×
Page R6
Suggested Citation:"Front Matter." National Academy of Sciences, National Academy of Engineering, and National Research Council. 2010. Electricity from Renewable Resources: Status, Prospects, and Impediments. Washington, DC: The National Academies Press. doi: 10.17226/12619.
×
Page R7
Page viii Cite
Suggested Citation:"Front Matter." National Academy of Sciences, National Academy of Engineering, and National Research Council. 2010. Electricity from Renewable Resources: Status, Prospects, and Impediments. Washington, DC: The National Academies Press. doi: 10.17226/12619.
×
Page R8
Suggested Citation:"Front Matter." National Academy of Sciences, National Academy of Engineering, and National Research Council. 2010. Electricity from Renewable Resources: Status, Prospects, and Impediments. Washington, DC: The National Academies Press. doi: 10.17226/12619.
×
Page R9
Suggested Citation:"Front Matter." National Academy of Sciences, National Academy of Engineering, and National Research Council. 2010. Electricity from Renewable Resources: Status, Prospects, and Impediments. Washington, DC: The National Academies Press. doi: 10.17226/12619.
×
Page R10
Suggested Citation:"Front Matter." National Academy of Sciences, National Academy of Engineering, and National Research Council. 2010. Electricity from Renewable Resources: Status, Prospects, and Impediments. Washington, DC: The National Academies Press. doi: 10.17226/12619.
×
Page R11
Suggested Citation:"Front Matter." National Academy of Sciences, National Academy of Engineering, and National Research Council. 2010. Electricity from Renewable Resources: Status, Prospects, and Impediments. Washington, DC: The National Academies Press. doi: 10.17226/12619.
×
Page R12
Page xiii Cite
Suggested Citation:"Front Matter." National Academy of Sciences, National Academy of Engineering, and National Research Council. 2010. Electricity from Renewable Resources: Status, Prospects, and Impediments. Washington, DC: The National Academies Press. doi: 10.17226/12619.
×
Page R13
Suggested Citation:"Front Matter." National Academy of Sciences, National Academy of Engineering, and National Research Council. 2010. Electricity from Renewable Resources: Status, Prospects, and Impediments. Washington, DC: The National Academies Press. doi: 10.17226/12619.
×
Page R14
Suggested Citation:"Front Matter." National Academy of Sciences, National Academy of Engineering, and National Research Council. 2010. Electricity from Renewable Resources: Status, Prospects, and Impediments. Washington, DC: The National Academies Press. doi: 10.17226/12619.
×
Page R15
Suggested Citation:"Front Matter." National Academy of Sciences, National Academy of Engineering, and National Research Council. 2010. Electricity from Renewable Resources: Status, Prospects, and Impediments. Washington, DC: The National Academies Press. doi: 10.17226/12619.
×
Page R16
Page xvii Cite
Suggested Citation:"Front Matter." National Academy of Sciences, National Academy of Engineering, and National Research Council. 2010. Electricity from Renewable Resources: Status, Prospects, and Impediments. Washington, DC: The National Academies Press. doi: 10.17226/12619.
×
Page R17
Page xviii Cite
Suggested Citation:"Front Matter." National Academy of Sciences, National Academy of Engineering, and National Research Council. 2010. Electricity from Renewable Resources: Status, Prospects, and Impediments. Washington, DC: The National Academies Press. doi: 10.17226/12619.
×
Page R18
Next: Summary »
Electricity from Renewable Resources: Status, Prospects, and Impediments Get This Book
×
Buy Paperback | $68.00 Buy Ebook | $54.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

A component in the America's Energy Future study, Electricity from Renewable Resources examines the technical potential for electric power generation with alternative sources such as wind, solar-photovoltaic, geothermal, solar-thermal, hydroelectric, and other renewable sources. The book focuses on those renewable sources that show the most promise for initial commercial deployment within 10 years and will lead to a substantial impact on the U.S. energy system.

A quantitative characterization of technologies, this book lays out expectations of costs, performance, and impacts, as well as barriers and research and development needs. In addition to a principal focus on renewable energy technologies for power generation, the book addresses the challenges of incorporating such technologies into the power grid, as well as potential improvements in the national electricity grid that could enable better and more extensive utilization of wind, solar-thermal, solar photovoltaics, and other renewable technologies.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!