tems for reducing energy use in home electronics; “superwindows” with very low U-values;5 dynamic window technologies that adjust cooling and electric lighting when daylight is available; and very-low-energy houses and commercial buildings that combine fully integrated design with on-site renewable-energy generation.

Transportation Sector

The transportation sector, which is almost solely dependent on petroleum, produces about one-third of the U.S. greenhouse gas emissions6 arising from energy use. The sector is dominated by use of the nation’s highways, for both freight and passengers.

Current technologies offer many potential improvements in fuel economy, and they become increasingly competitive and attractive as fuel prices rise. Reductions in fleet fuel consumption over the next 10–20 years will likely come primarily from improving today’s spark-ignition (SI), diesel, and hybrid vehicles that are fueled with petroleum, biofuels, and other nonpetroleum hydrocarbon fuels.

Over the subsequent decade, plug-in hybrid vehicles (PHEVs) that use electricity plus any of the fuels just mentioned may be deployed in sufficient volume to have a significant effect on petroleum consumption. Longer term, after 2030, major sales of hydrogen fuel-cell vehicles (HFCVs) and battery-electric vehicles (BEVs) are possible.

  • Light-duty vehicles. Power-train improvements for LDVs offer the greatest potential for increased energy efficiency over the next two decades. Technologies that improve the efficiency of SI engines could reduce average new-vehicle fuel consumption by 10–15 percent by 2020 and a further 15–20 percent by 2030. Turbocharged diesel engines, which are some 10–15 percent more efficient than equal-performance SI engines, could steadily replace nonturbocharged engines in the SI fleet. Improvements in transmission efficiency and reductions in rolling resistance, aerodynamic drag, and vehicle size, power, and weight can all increase vehicle fuel efficiency.

5

U-values represent how well a material allows heat to pass through it. The lower the U-value, the greater a product’s ability to insulate.

6

In this report, the cited quantities of greenhouse gases emitted are expressed in terms of CO2-equivalent (CO2-eq) emissions.



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement