CHAPTER ONE
Introduction

Global climate change has become one of the nation’s most significant long-term policy challenges, and addressing this challenge will require an array of often complex decisions by many different sectors of society and levels of government. Each decision will take on a distinct character, will involve a different mix of participants, and will be made in the context of many other policy issues. The options for responding to climate change involve a broad range of strategies, including (1) limiting greenhouse gas (GHG) emissions to slow the rate and limit the extent of climate change, (2) taking adaptation actions to reduce potential damages from climate change impacts, (3) expanding research and development to provide better low-carbon options for the national and global economy, and (4) improving scientific understanding about climate change and its impacts to enable better informed decision making.


Just as the participants and issues will vary, the needs for information and institutional support will differ across different groups and levels of decision making. For example, the general public would benefit from a better basic understanding of climate change and how it interacts with important values about economic growth, national security, quality of life, health, human rights, and the natural landscape. The general public also needs better understanding of how to think about the various risks of climate change and the responses to it (including the risks of not responding). Likewise, farmers and transportation planners want climate change forecasts at local and regional scales, including projections of the likelihood, severity, timing, and location of specific climate impacts. Decision makers in business and government require economic cost-benefit analyses and information to judge how best to allocate finite resources and make tradeoffs between competing values. People need information, which is often derived by trial and error, to help clarify over time particular aspects of each climate related problem, the emerging options available to respond to the problem, the plausible range of outcomes, and the types of institutions required for supporting effective action in the face of uncertainty.


Decision makers—public and private, national and local—need access to up-to-date and reliable information about current and future climate changes, the impacts of such changes, the vulnerability to these changes, and the response strategies for reducing emissions and implementing adaptation. Also important is the information that is needed to assess whether the decisions or responses are successful or



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement



Below are the first 10 and last 10 pages of uncorrected machine-read text (when available) of this chapter, followed by the top 30 algorithmically extracted key phrases from the chapter as a whole.
Intended to provide our own search engines and external engines with highly rich, chapter-representative searchable text on the opening pages of each chapter. Because it is UNCORRECTED material, please consider the following text as a useful but insufficient proxy for the authoritative book pages.

Do not use for reproduction, copying, pasting, or reading; exclusively for search engines.

OCR for page 19
CHAPTER ONE Introduction G lobal climate change has become one of the nation’s most significant long- term policy challenges, and addressing this challenge will require an array of often complex decisions by many different sectors of society and levels of government. Each decision will take on a distinct character, will involve a different mix of participants, and will be made in the context of many other policy issues. The options for responding to climate change involve a broad range of strategies, includ- ing (1) limiting greenhouse gas (GHG) emissions to slow the rate and limit the extent of climate change, (2) taking adaptation actions to reduce potential damages from climate change impacts, (3) expanding research and development to provide better low-carbon options for the national and global economy, and (4) improving scientific understanding about climate change and its impacts to enable better informed deci- sion making. Just as the participants and issues will vary, the needs for information and institutional support will differ across different groups and levels of decision making. For example, the general public would benefit from a better basic understanding of climate change and how it interacts with important values about economic growth, national security, quality of life, health, human rights, and the natural landscape. The general public also needs better understanding of how to think about the various risks of climate change and the responses to it (including the risks of not responding). Likewise, farmers and transportation planners want climate change forecasts at local and regional scales, including projections of the likelihood, severity, timing, and location of specific climate impacts. Decision makers in business and government require economic cost-benefit analyses and information to judge how best to allocate finite resources and make tradeoffs between competing values. People need information, which is often derived by trial and error, to help clarify over time particular aspects of each climate related problem, the emerging options available to respond to the problem, the plausible range of outcomes, and the types of institutions required for supporting effective ac- tion in the face of uncertainty. Decision makers—public and private, national and local—need access to up-to-date and reliable information about current and future climate changes, the impacts of such changes, the vulnerability to these changes, and the response strategies for reducing emissions and implementing adaptation. Also important is the informa- tion that is needed to assess whether the decisions or responses are successful or 

OCR for page 19
I N F O R M I N G A N E F F E C T I V E R E S P O N S E T O C L I M AT E C H A N G E should be revised in the light of experience and new knowledge. After considerable discussion of the task, and the relation of its work to the other three America’s Climate Choices (ACC) panels, the Informing panel chose to investigate the following key ques- tions for this report: • Who is making decisions and taking action on climate change in the United States? What are their needs for information and decision support, and what are the barriers to good decisions? • What decision making frameworks and methods are being used, and which are the most effective? • How might climate and greenhouse gas information systems and services support more effective decisions and actions? • What is known about the most effective ways to communicate about cli- mate change, especially with the public and through formal and informal education? This report sets out to identify the types of decisions that may need to be made about climate change by governments, the private sector, and society. It examines the ways in which information to support these decisions can be provided more effectively through the development of new, authoritative and accessible information, especially about climate impacts and GHG emissions. Finally, it looks at the development of deci- sion tools that facilitate the use of information and integrate the key values, data, and processes that interact to shape alternative futures. Although we hope that our findings will be of interest to a wide range of decision makers, our recommendations are directed primarily toward the federal government and its role in informing and coordinating a national response to climate change. THE CHALLENGE OF CLIMATE CHANGE The ACC companion reports (Limiting the Magnitude of Future Climate Change (NRC, 2010d), Adapting to the Impacts of Climate Change (NRC, 2010a), and Advancing the Sci- ence of Climate Change (NRC, 2010b) provide detailed overviews of the causes, conse- quences, and range of responses to climate change in the United States and globally. Collectively they communicate a sense of urgency about the risks of climate change and the need to make immediate decisions related to reducing GHG emissions, imple- menting adaptation strategies, and investing in research. This ACC panel agrees with the conclusions of the report Advancing the Science of Climate Change (NRC, 2010b) that “[c]limate change is occurring, is caused largely 0

OCR for page 19
Introduction FIGURE 1.1 Yellow arrows track what summers are projected to feel like under a lower emissions sce- nario, while red arrows track projections for a higher emissions scenario. By late this century, residents of New Hampshire would experience a summer climate more like what occurs today in North Carolina. SOURCE: Frumhoff et al. (2007). by human activities, and poses significant risks for—and in many cases is already affecting—a broad range of human and natural systems.” This is consistent with the analyses of the Intergovernmental Panel on Climate Change (IPCC, 2007b), which found that the global climate is warming, that this warming is very likely due to green- house gases from human activity, and that unless we reduce GHG emissions, the cli- mate will warm by 2°F to 11.5°F (1.1°C to 6.4°C) by the end of the century and will have serious impacts on ecosystems, water resources, low latitude agriculture, coasts, ocean acidification, and increased risks of abrupt or irreversible change (Figure 1.1). The IPCC also recommends an iterative risk management approach1 that includes adaptation and emissions reduction strategies and that takes into account damages, co-benefits, sustainability, equity, and attitudes toward risk (IPCC, 2007b). New research and data have confirmed and updated the trends and analyses of the IPCC and have suggested further reasons for concern. Climate data analyses show that the earth has continued to warm, sea ice and glaciers are shrinking, and regional 1 An iterative risk management framework defines risk as the impact of some adverse event multiplied by the probability of its occurrence (see IPCC, 2007b). 

OCR for page 19
I N F O R M I N G A N E F F E C T I V E R E S P O N S E T O C L I M AT E C H A N G E changes in the United States are occurring, including increases in winter temperatures and intense drought in the Southwest (Karl et al., 2009). Greenhouse gas emissions have continued to increase, with carbon dioxide (CO2) concentrations reaching to 385 ppm in 2008, the highest level in 2 million years. Emissions from fossil fuel use and cement production have increased by an average 3 percent per year since 2000 with a growing proportion of emissions driven by economic development in Asia (LeQuéré et al., 2009). There are also indications that the capability of land and oceans that natu- rally take up or absorb carbon dioxide is weakening, contributing to higher levels of this GHG in the atmosphere (House et al., 2008; LeQuéré et al., 2009). These trends are occurring despite efforts in some parts of the world to limit emis- sions and are moving toward the higher end of the emission scenarios used by IPCC and thus toward faster and more intense climate changes. Several recent modeling studies suggest that the delays in limiting emissions and the difficulties in turning things around even with immediate deployment of low-carbon technologies and for- est protection mean that there is a very high chance of exceeding 450 ppm of carbon dioxide equivalent2 (CO2e) GHG concentrations with consequently higher risks of higher temperatures (for more discussion see Calvin et al., 2009; NRC, 2010d). These re- sults suggest that delays in acting now may make it more difficult and more expensive for decisions makers to respond later. Although the extent of future climate change and the exact nature and severity of impacts remain uncertain, continuing to emit GHGs at the current rate is expected to create long-term or irreversible changes in earth systems and a variety of undesirable consequences that will require profound adaptations on the part of both human and natural systems (IPCC, 2001, 2007b; NRC, 2010b; Solomon et al., 2009). Responding effectively to these risks requires effective long-term planning because decisions and actions taken now will have important implications for decades to come. The emis- sions reduction strategies and adaptation responses that will reduce the magnitude of climate change and reduce its impacts require active collaborations across science, technology, industry, government, and the public. The earth and climate systems, like economic and social systems, exhibit complex and chaotic behaviors that can be unpredictable and are difficult to model. Not only is the climate a chaotic system, but humans are pushing it into poorly understood patterns and processes where there are chances of rapid climate change and surprise. The un- certainties regarding the details of future climate change depend on which decisions 2 For GHG emissions inventories and mitigation, the common practice is to compare and aggregate emissions by using global warming potentials (GWPs). Emissions are converted to a carbon dioxide equiva- lent (CO2e) basis using GWPs as published by the IPCC. 

OCR for page 19
Introduction society makes about future energy and resource use, the complexity associated with the interactions between natural and human caused climate change and with other environmental changes, the difficulties of modeling climate at the regional scale, and the incomplete understanding of processes (e.g., carbon cycle and ice sheet dynamics) and of the vulnerability and adaptive capacity of human and natural systems at the local scale. In Chapters 5 and 6, the panel addresses the need for monitoring, reporting, verifica- tion, and information systems that can help manage these uncertainties. Decisions need to be based on scenarios that cover the range of possible developments in socioeconomic and environmental systems. Uncertainties in understanding climate change and response options—as in other areas of economic, technological, social, military, and environmental policy—are an important reason for action that can help reduce risks. Uncertainty is not a reason for inaction. Rather, with knowledge of un- certainties we can anticipate a range of possibilities, some of which may be so severe that we should act now to reduce the chances of their occurrence. Effective decisions require the best available information, including information about the level and nature of uncertainty, so that policy makers and others can make careful judgments about what to do. Communicating uncertainty often poses a problem for those trying to generate support for measures that might reduce the risks associated with climate change, especially in explaining the science and the choices to the public (Figure 1.2). An effective American response to climate change requires a solid base of information and a strong set of institutions that can evaluate the risks, costs, and opportunities presented by climate change, can make the best possible decisions about how to respond, and can communicate the decisions and the rationale behind them clearly to the relevant audiences. Decision makers and stakeholders will need sector specific information to respond to climate change and may assign different values both to the impacts of climate change and to the costs and benefits of policy actions to limit or adapt to these impacts. Hence, a fundamental part of climate change policy must be deciding how to allocate finite resources among the diverse options available for limiting emissions, adapta- tion, or research. For that, decision makers need a clear understanding of and accurate information on the costs, risks, tradeoffs, and potential benefits of each option for various segments of society. This is not unique to the problem of climate change; most important decisions are made without perfect clarity. The choice of options is seldom either-or, but rather it is a judgment about what constitutes the right mix and also 

OCR for page 19
I N F O R M I N G A N E F F E C T I V E R E S P O N S E T O C L I M AT E C H A N G E FIGURE 1.2 This simple visualization of how climate change might affect temperatures in the south- western United States portrays uncertainty in two ways: through a low and high emissions scenario (one where fossil fuel use continues to increase, one where use is limited) and through brackets that show the range of uncertainty for temperatures under each scenario. SOURCE: USGCRP (2009). 

OCR for page 19
Introduction how the right combination of options is likely to vary across geographic regions and over time. DECISION MAKERS, THEIR INFORMATION NEEDS, AND THE CHALLENGE OF RESOURCE ALLOCATION Table 1.1 provides a range of examples of who may need to make decisions about climate change, ranging across scales of government to the private sector, non-gov- ernmental organizations (NGOs), and individuals, and the type of decisions they may wish to make. This table makes it clear that information and decision tools need to be made available to a broad audience and that focusing only on the U.S. Federal govern- ment would miss many of the key decisions and responses that will be made across America. The table shows that decision makers are faced with many different decisions but of course most decision makers have limited financial, human, or political resources and cannot take action on everything so must make choices and set priorities about where to allocate scarce resources. Not surprisingly, many of the fundamental choices regarding climate change policy involve the allocation of resources. In making such allocations, decision makers are concerned with how to establish objective, defensible, return on investment criteria for their constituents, or, in the case of business, their shareholders. Resource allocation takes into account not only near-term priorities but also long-term objectives, which include the economy, non-climate decisions, and the effect on future generations. They need to balance and communicate the costs of not acting with those of taking action; they must decide how much to spend on different types of actions, such as emissions reductions and adaptation, and which sectors and places should receive resources to respond. Because climate change decisions often involve benefits related to health, safety, equity, and environmental concerns, policy makers must decide whether and how to include such non-monetary benefits in the return on investment analysis. The ability to create and implement effective climate policy will likely come down to the availability of resources, and the choices policy makers make will be directly linked to the price assigned to the harms against which one hopes to protect. As more communities become aware of the need to prepare for the inevitable impacts of climate change, policy makers may be faced with the choice of directing resources to programs designed to limit GHG emissions or to programs that seek to build resilience against future impacts. At the local level, strategies to limit emissions tend to focus on energy (conservation, efficiency, and development), low-carbon technol- 

OCR for page 19
I N F O R M I N G A N E F F E C T I V E R E S P O N S E T O C L I M AT E C H A N G E TABLE 1.1 Examples of Decision Makers and the Choices They Make Who Example Decisions Federal government Whether to participate in international agreements and bilateral/ multilateral assistance programs relating to climate change Whether to regulate GHG emissions and, if so, what policy mechanisms (e.g., cap-and-trade, carbon taxes, standards, etc.) to use, how these mechanisms are designed, and what agencies and institutions will administer them How and where to reduce GHG emissions from federal activities How to adapt to climate change on federal lands and jurisdictions Priorities for funding research, technology development, and observing systems Setting standards and guidelines for carbon management (e.g., energy efficiency, information labels, GHG reporting, and carbon disclosure for investors), coastal protection, water allocation, etc. How to ensure the security of food, water, and health for the U.S. population, how to respond to potential national security risks of climate change, and how and whether to respond to human security concerns in other regions of the world What is the best way to educate and communicate about climate change to the public State, tribal, and local How to control GHG emissions, especially from utilities, transport, and government buildings, and whether to join regional trading initiatives, and how to encourage citizens to reduce their emissions Setting renewable portfolio and energy efficiency standards How to incorporate climate change into land use planning, infrastructure projects, and disaster planning How to amend the building code to reduce GHG emissions and to address the impacts of climate change, including the increased potential for flooding, droughts, high winds, heat waves, and disruption of utility services, as well as the need for buildings to be inhabitable without energy How and whether to limit emissions from state and local government operations How to facilitate adaptation through policy decisions about insurance cover, environmental protection, land use, etc. Potential information campaigns and educational guidelines Private sector How to reduce GHG emissions from operations and supply chains, and whether to participate in regional and global carbon markets and offsetting 

OCR for page 19
Introduction TABLE 1.1 Continued Who Example Decisions How to develop good information for consumers about carbon in products and other sustainable practices Whether and how to influence government and international policy through best practice, lobbying, business networks, etc. Whether and how to insure climate risks How to adapt to climate risks and respond to climate impacts in a globalized market Whether to invest in businesses and technologies that are vulnerable to climate risks or that are not limiting their emissions Whether to start up a new business focused on solutions to climate change How to respond to pressure from NGOs, shareholders, and investors concerning climate change How and what to communicate about climate change (especially from media and cultural sector) Funding research and development Non-governmental How to reduce their own GHG emissions and influence the emissions of organizations (e.g., trade, their members or the public religious, environmental, Where and how to facilitate adaptation humanitarian, foundations) Whether and how to influence government, the private sector, and the public through information, communication, action, networks, and lobbying Funding research and responses to climate change Individuals How seriously to judge the threat of climate change and how to weigh current costs against future benefits How to prepare by adapting homes, lifestyles, and landscapes to climate change What actions to take to reduce their emissions in household energy use, travel, and purchase of household goods and food Should their investments (including pensions) be in portfolios with low climate risk or in climate responsible businesses Whether and how to try and inform or influence others (families, employers, educators, politicians, and neighbors) or hold them accountable for actions on climate change 

OCR for page 19
I N F O R M I N G A N E F F E C T I V E R E S P O N S E T O C L I M AT E C H A N G E ogy, and transportation. Adaptation strategies tend to focus on infrastructure (roads, bridges, ports, and coastal development), water (conservation, supply, and manage- ment), disaster preparation, and public health and safety concerns. Not surprisingly, many local policy makers are searching for initiatives that address both limiting emis- sions and adaptation, such as land use planning, distributive energy systems, open space preservation, and green space development. Some of these strategies are already functions of local government, including com- prehensive planning, building and energy codes, neighborhood outreach, equipment purchasing, and infrastructure planning and development. Others are new to local government, including involvement in markets for GHGs, carbon taxes, or ways to pilot the development of new technologies and energy sources, where the economics of resource allocations are less clear. One of the most significant resource allocation questions is how to address the chal- lenge of the nation’s infrastructure and the barriers it poses to both emissions reduc- tion and adaptation. Power generation, transport, protected areas, water resources, and urban development are the result of major infrastructural investments that have locked the nation into pathways and patterns of high GHG emissions and vulner- abilities to the impacts of climate change. Infrastructure may be the nation’s greatest barrier and, as discussed below, its most powerful opportunity to limit emissions and adapt to climate change. Decision makers must consider whether to replace this infra- structure now or over longer periods of replacement and reinvestment, and whether to prevent the building of new infrastructure that increases climate risks. As climate change policy is addressed, decision makers must also decide how quickly to implement new policy. This choice is especially challenging given both the general need for more and better scaled information on climate change and its impacts, and also the uncertainties associated with new energy development. Decision makers are wary of making wrong choices, such as picking the wrong technology or building the wrong “infrastructure of the future.” On the other hand, many policy makers have embraced the idea that taking action to respond to climate change is urgent and that they play a vital role in catalyzing change through successful policy action, even pro- viding inspiration for other decision makers to take action. Thus, some policy makers are innovating new decision making processes that embrace failure as an element of future success and evaluate the benefits of being “first movers” in the development of new technologies, models of action, and policy. Economic information such as costs and benefits of different actions, return on in- vestments and avoided damages, and distributional and competitive effects on local economies, firms, and households is essential to such resource allocation decisions. 

OCR for page 19
Introduction However, such information is fraught with assumptions about how to cost and value different actions now and into the future, including those that have non-monetary ef- fects on areas such as ecosystems and health. For example, a local decision maker may worry about how to balance the costs and risks of regulating local industrial emissions with the emerging possible impacts of climate change on local tourism or water sup- plies and costs of adapting these sectors. But the decision maker is also faced with the problem of competing priorities where they may feel that other urgent issues—such as poverty, housing, and crime—demand the bulk of available financial and human resources, leaving little for responding to climate change. We discuss some of these challenges, and some tools that may help with such complex economic decisions, in Chapter 4. Decision makers are increasingly aware of the multidisciplinary nature of climate change policy even as they work to make the most of available resources. They need to create policy and stakeholder teams that stretch beyond traditional notions of ju- risdiction; they are also seeking ways to leverage resources not only across disciplines but also across physical and temporal scales to maximize strategies and investments. For example, they seek to take advantage of economies of scale to improve purchas- ing power and the marginal costs of new technologies. Decision makers also confront the choice of how to best integrate policies and initia- tives across multiple geographic and temporal scales. An example might be a local neighborhood development initiative to help a community become more energy efficient, walkable, and environmentally friendly. This initiative would benefit greatly if integrated with a larger regional plan that involves building new or more efficient public transit along a nearby corridor, and an energy plan to construct a connected energy district. Thus, decision makers today need information and support to help them make the major infrastructure investment choices that will be effective across a wide range of possible future conditions. BARRIERS TO EFFECTIVE DECISION MAKING Framing of Climate Change Affects Decision Making and Responses Decision making about climate change is often conducted not only under conditions of scientific uncertainty but also by people who may be unfamiliar with the details and weight of scientific evidence. Under these conditions, human judgment is greatly influenced by a number of factors, including the “framing” of the problem itself (Ferree et al., 2002; Gamson and Modigliani, 1989; Nisbet and Mooney, 2007; Tversky and 

OCR for page 19
I N F O R M I N G A N E F F E C T I V E R E S P O N S E T O C L I M AT E C H A N G E BOX 1.1 Principles of Effective Decision Support 1. Begin with users’ needs. Decision support activities should be driven by users’ needs, not by scientific research priorities. These needs are not always known in advance, and they should be identified collaboratively and iteratively in ongoing communication among knowledge producers and decision makers. The latter can usefully be thought of as constituencies—groups and networks of decision makers that face the same or similar climate related events or choices and therefore have similar information needs. 2. Give priority to processes over products. To get the right products, start with the right process. Decision support is not merely about producing the right kinds of information products. Without attention to process, products are likely to be judged inappropriate by intended users—although excessive attention to process without delivery of useful products can also be ineffective. To identify, produce, and provide decision support, processes of interaction between decision support providers and decision makers are essential. 3. Link information producers and users. Decision support systems require networks and institutions linking information producers with decision makers. The cultures and incentives of science and practice are different, for good reason, and, in order to build productive and durable relationships,those differences need to be respected.Some ways to accomplish this rely on networks and intermediaries, such as boundary organizations. 4. Build connections across disciplines and organizations. Decision support services and products must account for the multidisciplinary character of the needed informa- tion, the many organizations that share decision arenas, and the wider societal context in which decisions are made. 5. Seek institutional stability. Decision support activities need stable support. This can be achieved through formal institutionalization, less formal but long-lasting network building, norms for routinizing decision making, and mandates, along with committed funding and personnel. Stable institutions are needed to ensure consistent and effec- tive decision making, to foster trust in decision making processes, and to sustain policy initiatives. 6. Design for learning. Decision support systems should be structured to enable flexibility, adaptability, and learning from experience. SOURCE: NRC (2009a). actual need as possible and that any additional research will be undertaken. If unin- tended social, political, and economic consequences begin to manifest themselves as the decision process proceeds, further obstacles may arise. As policies are imple- mented, new facts will arise (e.g., different costs and benefits than assumed, or chang- ing social or economic trends), and course corrections will become necessary (NRC, 

OCR for page 19
Introduction 2009a). Information about climate change and its consequences is continually chang- ing and decisions may not be right the first time; decisions will have to be revisited from time to time within constituency networks (see Chapter 3). Political Challenges Can Delay Making Informed and Effective Decisions Like other major social policy issues that the nation faces, such as immigration and border security, health care, and defense, climate change is a politically charged topic, in part because the costs and tradeoffs of policy strategies threaten different political and economic interests. Political discourse plays a significant role in problem formula- tion and framing in the climate change arena. Advocates for different strategies for responding to climate change seek to mobilize support for particular policy options and close off the exploration of others by seeking to control the framing of the issue (Johnston and Noakes, 2005; Snow et al., 1986). For example, the tobacco industry fought for decades to frame tobacco use as an individual lifestyle choice, rather than an addiction, in an effort to forestall stricter regulation of its product. In opposition, the anti-tobacco movement argued for the regulation of tobacco as an addictive substance and a health hazard that is harmful even to those exposed to second-hand smoke. Ultimately, decision makers rejected the arguments framing tobacco use as an individual choice and tied decisions to scientific evidence about the harm that it causes. The dominance of particular interest groups in any decision making process can result in delay or even lack of consideration of certain policy options. Although a number of important federal activities are under way, as of this writing consideration of federal climate change legislation has been postponed in Congress, and decisions about international action on climate change under the United Nations Framework Convention on Climate Change have also been delayed following disagreements and confusion at the Copenhagen negotiations. The reasons behind these delays and disagreements are complex and include differences of opinion about the urgency of responding to climate change. We discuss the drivers and attitudes toward climate policy opposition and why attitudes toward climate change are shifting in Chapter 8. This apparent stalemate at the federal and international levels stands in marked contrast to the multiple actions described in Chapter 2 and elsewhere in this report, which have been undertaken by regions, states, local communities, non-governmental organizations, and the private sector. Federal inaction may constitute a significant barrier to effective decision making for many reasons. Without guidance at the national level on emissions reductions and 

OCR for page 19
I N F O R M I N G A N E F F E C T I V E R E S P O N S E T O C L I M AT E C H A N G E adaptive actions, various sub-national laws and regulations are emerging. A policy vacuum is emerging in areas where only the federal government can act, such as set- ting nationwide GHG emissions reduction targets; establishing mechanisms to regu- late carbon; providing “policy certainty” for corporations seeking to make long-term investments (see Chapter 3 for more discussion); generating substantial revenues that can be directed toward climate change responses; and making large-scale invest- ments in research and development. Because political stalemates of this type are common, scholars of the policy process have developed the idea of “policy windows” (Kingdon, 1995), a metaphor that empha- sizes the idea that opportunities for action may appear under unusual circumstances and then disappear later, as politics returns to “business as usual.” When policy win- dows open, choices that had formerly been off the table or impossible to undertake may be given a second look, and decisions that previously seemed impossible may be made. Scholarship in this area emphasizes the importance of “policy entrepreneurs” (Kingdon, 1995; Roberts and King, 1991) that are prepared and able to take advantage of policy windows to temporarily disrupt systems of political dominance. For example, disaster events are well known for their ability to open policy windows, if only tempo- rarily (Birkland, 1997). In addition, new scientific findings such as those contained in IPCC reports, as well as meetings and conventions that require a response on the part of policy makers, can help create policy windows. The broader social, economic, and political context should be taken into account in understanding why some initiatives move smoothly through the policy process while others do not, how and why policy windows open in some cases but not in others, and why some policy entrepreneurs succeed while others fail. In the case of climate change, this means recognizing the impact on decision support activities of the cur- rent national and global macroeconomic climate, public opinion regarding national policy issues, and other significant political issues such as health care. Politics and Science Response to climate change can also be hampered by interest groups that spread conflicting information about climate change science, promoting confusion among decision makers and the public. For example, some groups state that the climate is not changing, assert that the science is controversial or highly uncertain, and deny scientific facts offered by others knowledgeable about the field (Jacques et al., 2008; McCright and Dunlap 2000, 2003; Rowland, 2000). Other groups may overstate the 

OCR for page 19
Introduction case, focusing only on the more dramatic scenarios or implying that the science is more certain than suggested by the literature. Claims that climate change science is controversial and that climate change is not in fact occurring continue to be made and are one reason that people put off or decide against acting on climate change. As we discuss in Chapter 8, there are segments of the American public who are unconvinced of the risks of climate change and the need to act, but the majority of Americans are concerned and would like to see action. Some people are certainly confused or overwhelmed by the debate about climate change, especially by the way the science is portrayed in the media, and by the impact of special interest funding. As policy debates go forward, it will be important for decision makers to examine the scientific and policy bona fides of those claiming expertise and providing information about climate change and for government to provide the best possible assessments of the science with clarity and careful evidence. As Justice Brandeis noted, “sunlight is the best disinfectant,” and transparency is essential in mat- ters of policy. Decision makers must also recognize that the nation has been here be- fore and draw appropriate lessons from history (see Appendix B) where efforts to deny and undermine scientific findings, such as with asbestos, tobacco, and other scientific issues that have been presented as controversial, notwithstanding a preponderance of scientific evidence to the contrary. Advice on issues has also shifted, for example, on mammograms for middle-aged women. Institutional Barriers to Effective Decision Making A full discussion of the institutional and organizational factors that complicate deci- sion making with respect to climate change is beyond the scope of this report. As is the case with policy making more generally, institutional and organizational inertia can stand in the way of sound climate decision making. The purpose of institutions is to establish, implement, and sustain norms and codes of conduct within policy arenas. By design, institutions are slow to change; without such stability, social life would lack structure and predictability. Stability is also important because users need trusted sources of information over time. However, when institutions are incapable of adapt- ing to new circumstances and information, or cannot do so in a timely manner, it impedes effective responses to climate change. A recent NRC report, Restructuring the Federal Climate Change Science Program (NRC, 2009d), evaluates the institutional chal- lenges for the U.S. Global Change Research Program. The ability of any organization to take on adaptive measures will depend on the ex- tent to which it sees the immediacy and importance of the need to act in the context 

OCR for page 19
I N F O R M I N G A N E F F E C T I V E R E S P O N S E T O C L I M AT E C H A N G E of its other interests and responsibilities. The following factors guide that vision and ability of an organization to act: • Knowledge, understanding, and experience with climate change and its effects; • Compatibility of its mission with climate change issues; • Jurisdiction or domain, including mechanism of interagency coordination; • Capacity (human, financial); and • Capability (politics, organizational culture). Legislation, regulation, and other types of external pressure (e.g., crises, elections, so- cial movements, and media attention) are typically required to stimulate institutional and organizational change. Boundary organizations have sometimes been able to overcome these barriers by communicating and collaborating among organizations such as scientific agencies, research centers, local government agencies, and corpora- tions (Cash, 2001; Cash et al., 2003; Fennell and Alexander, 1987). Institutional barriers also arise because of insufficient coordination among federal agencies whose activities are relevant to climate change research, emission reduc- tions, and adaptation strategies. Organizations at federal, state, and local levels and in the private sector that are not currently involved in climate change programs (e.g., the U.S. Census Bureau) have information they can contribute to support climate related decision making. Many agencies do not consider climate change as part of their authority, particularly at the sub-federal level. Climate change polices usually reside in environment and energy agencies and are often limited to emission reduction strategies rather than adaptation (see Adapting to the Impacts of Climate Change NRC, 2010a). Lack of clarity regarding institutional and organizational roles, responsibilities, and authority also hampers decision making. Decision makers characteristically act within bounds, and as a result they need clear guidance in areas such as targets, mandates, and other aspects of limiting and adapting to climate change. However, at the pres- ent time, such guidance is unavailable in many areas. As discussed in Chapter 6, the nation currently lacks consistent standards for how to report emissions reductions, as well as sound ways of monitoring emissions and verifying compliance with whatever standards might be developed. Without these and other types of information, there can be no national strategy for managing GHGs. Focusing on another policy vacuum, federal disaster related legislation offers virtually no guidance on what states and local communities should do in response to the threat of climate change, largely because climate related concerns have not yet been incorporated into such legislation. 0

OCR for page 19
Introduction As in other policy arenas, some of these kinds of ambiguities can be clarified through amendments to existing legislation, rulemaking activities, and the development and adoption of standards. Others will likely be settled only through a protracted process of court decisions, new legislation, and cross agency negotiation. This is the case, for example, for the ruling that the Environmental Protection Agency has the authority to regulate GHGs. Many decisions on carbon regulation hinge upon the outcome of that case, decisions that cannot be made without further policy clarification. Informational Barriers Effective decision making is based on sound information. Sectors throughout our national economy (water, agriculture, fisheries, financial, health, and energy) need up- to-date reliable information tailored to their specific needs. Some of the major infor- mational barriers to effective decisions (discussed at length in the remainder of this report) include the lack of detailed, timely, and consistent information on GHG emis- sions and the activities that produce them, uncertainties in how climate will change at the regional scale and what it means for sectors, landscapes, livelihoods, human needs, and the need to link information about climate change and responses in the United States to what is happening internationally. Some decision makers may understandably resist using information when uncer- tainty is high (Slocum et al., 2003), while others may find even uncertain projections useful. Related problems develop when different model projections predict different outcomes or when emission reductions are inconsistently reported or reported more than once. Decision makers are then faced with the challenge of determining which projections and emission reports appear to be most credible. For example, information on hurricane landfall projections is used by government responders to decide how to allocate emergency resources; by local officials to decide whether to issue evacuation orders; by businesses choosing whether to close and lose business, or remain open and risk damage or injury; and by residents deciding whether and when to evacuate. Information needs to be provided in a timely fashion if decision makers are to make the best possible decisions. For example, a utility company making decisions with respect to long-term investments may find decadal and multi-decadal climate pro- jections quite useful. In contrast, year-to-year projections may be more appropriate for decision makers in the agricultural sector. In addition, decision makers are often required to act rapidly, even if appropriate information is not available, because waiting for more definitive information may mean losing resources and momentum. Other decisions are tied to budget or election cycles, which mean that major projects 

OCR for page 19
I N F O R M I N G A N E F F E C T I V E R E S P O N S E T O C L I M AT E C H A N G E must be designed and planned years before they will be implemented. Ultimately, decision makers will judge when the available information is adequate for decision making purposes, and this judgment will depend on personalities and the particular circumstances. Another critical barrier to information use is that of accessibility. If information is not easily accessible then people may make decisions without it. Because information about climate change is available from multiple sources, including different agen- cies within the federal government, decision makers may waste time and become confused through trying to find relevant information, especially through the internet, and frustrated in attempts to find information specific to their needs and location. If information providers fail to understand the information needs of their users they will miss opportunities to increase the effectiveness of decisions. The constant stream of information about climate change from the media, NGOs, and government can also lead to issue fatigue and failure to pay attention to important new information. THE SCOPE AND PURPOSE OF THIS REPORT In 2008, Congress directed the National Academy of Sciences to “investigate and study the serious and sweeping issues relating to global climate change and make recommendations regarding what steps must be taken and what strategies must be adopted in response to global climate change.” This report, Informing an Effective Response to Climate Change, is part of the resulting America’s Climate Choices suite of activities (see Foreword). This panel was asked to consider what can be done to inform effective decisions and actions related to climate change. More specifically, the panel was asked to describe and assess different activities, products, strategies, and tools for informing decision makers about climate change and helping them to plan and execute effective, integrated responses (see statement of task in Appendix A). Com- panion reports provide information and advice on Limiting the Magnitude of Future Climate Change (NRC, 2010d), Adapting to the Impacts of Climate Change (NRC, 2010a), and Advancing the Science of Climate Change (NRC, 2010b). The panel recognizes that climate change is but one among many important is- sues policy makers face. However, climate change touches all aspects of our nation’s economy, prosperity, human health and safety, and security (Figure 1.3). An effective response requires actions across a wide range and scale of public and private agencies and organizations, as well as by individual citizens. Thus, the panel devoted consider- able attention to understanding the information needs of different entities and the 

OCR for page 19
Introduction 1-3.eps FIGURE 1.3 Complexities of the connections between climate change and many aspects of our econ- omy, prosperity, society, and security. SOURCE: IPCC (2007b). bitmap institutions needed to provide comprehensive information that might inform their attitudes, decisions, and actions. Climate change presents a technical, social, and political challenge that is in some ways similar to, although in other ways quite unique from, many challenges the United States has faced before. The United States has the proven ability to revolutionize tech- nology and the nation’s infrastructure, mobilize around a common purpose, work with other nations to combat common threats, and solve major environmental problems at far less cost than originally expected (see Appendix B). Previous generations have suc- cessfully addressed problems of similarly daunting complexity, uncertainty, and scale. 

OCR for page 19
I N F O R M I N G A N E F F E C T I V E R E S P O N S E T O C L I M AT E C H A N G E The task assigned to this panel had considerable potential for overlap with topics dealt with in other panels because information and decision making constitute a core component of reducing emissions (the Limiting panel), adaptation (the Adapt- ing panel), and scientific research (the Science panel). Although we tried to negotiate boundaries and overlaps with other panels, we were asked to prepare an independent panel report. We had extensive discussions about our task description and hope that the topics we have covered are those of greatest immediate help in decision making. ORGANIZATION OF THIS REPORT Chapter 2 describes who is making decisions about climate change in the United States and finds that many other actors beyond the federal government are making decisions that are a significant contribution to the overall national responses. Chapter 2 analyzes different types of decision makers, federal agencies, the courts, state gov- ernment, cities, companies, and environmental NGOs and some of the decisions they are making. An initial assessment is made of some of their information needs. Chapter 3 builds on previous NRC reports and the IPCC, proposing iterative risk man- agement as the best approach to informed decisions, and discusses why this frame- work is best suited for a variety of decision makers in responding to climate change. Chapter 4 evaluates specific decision support tools and other resources used for a variety of decisions related to climate change at the international, national, and state scales. Tools used in business, for adaptation choices, for limiting GHG emissions, and for the value of information are evaluated. Chapter 5 addresses the question of what type of climate services are needed for an effective response to climate change in the United States and outlines the justification, functional components, institutional consideration, and principles for climate services. This chapter was written during a period of considerable debate about the needs for and management of an official National Climate Service. The chapter addresses some of the issues under debate and on the provision of information on climate, climate change, and climate impacts (emissions are addressed in Chapter 6). Chapter 6 examines a variety of strategies and institutions that are needed to ensure the tracking of emissions and provide government, the private sector, and individuals with reliable information about the GHG implications of their decisions, practices, and lifestyles. Chapter 7 discusses issues surrounding the need for international information on adaptation strategies and GHG emissions. Informed decisions and effective responses 

OCR for page 19
Introduction to climate change within the United States require that the nation contribute to international information gathering and that U.S. decision makers, including farmers and other businesses, need to receive reliable and usable information about what is happening with climate change impacts and responses elsewhere in the world. Chapter 8 discusses what is known about communication and education about cli- mate change, with some recommendations for improvements. During the early stages of the America’s Climate Choices study there were several opportunities for public input. One of the main issues of concern was that of public understanding of climate change and the ways in which information and education might provide the public with improved insights and strategies for responding to climate change. Chapter 8 is a response to this issue. Because other panels focused on training and capacity build- ing, we did not undertake a comprehensive analysis of training beyond that within the education system. 

OCR for page 19