reporting, it does not remove the need for health departments to conduct additional followup to obtain information not contained in laboratory reports, such as symptoms, race and ethnicity, and risk history (Hopkins, 2005; Klevens et al., 2009).

A pilot study of a surveillance system based on electronic medical records in Massachusetts found a 39% increase in reported cases of chlamydia and a 53% increase in reported cases of gonorrhea over a 12-month period compared with cases reported through the existing passive surveillance system. The system was also able to identify 81 instances of pregnancy not identified by passive surveillance in patients with chlamydia or gonorrhea (CDC, 2008b). The system was shown to identify cases of acute HBV infection reliably, including cases that had not yet been reported to state authorities (Klompas et al., 2008). Other studies have found a similar benefit of improving surveillance for infectious diseases via automatic notification with electronic medical records (Allen and Ferson, 2000; Hopkins, 2005). CDC should promote the use of surveillance systems based on electronic medical records and open-source platforms that will enable the extraction and transmission of data to state and local health departments.


Standardized Laboratory Reporting It is essential that laboratory data be standardized and that health departments have automated access to them. Automated electronic laboratory reporting improves the completeness and timeliness of disease surveillance (Effler et al., 1999, 2002; Overhage et al., 2008; Panackal et al., 2002; Ward et al., 2005). Currently, many laboratory-data collection systems do not integrate or link the multiple laboratory tests needed to satisfy a case definition (CDC, 2008b). That could be more easily addressed with electronic laboratory reporting. CDC should work with states and laboratories to develop and standardize electronic systems. In addition, it may be useful for CDC to document and monitor which laboratory tests are reportable in each state, as is done for the HIV surveillance system.


Identifying Pregnant Women There is a strong need to identify pregnant women who have chronic HBV to ensure that appropriate followup of the newborn is conducted with regard to receipt of HBIG and hepatitis B vaccine. Currently, most health departments lack an automated means of determining whether the subject of a reported positive HBsAg test was a pregnant woman. Local health departments have to investigate all positive hepatitis B tests in women of childbearing age, and this creates a substantial workload. CDC should work with national laboratory vendors to identify ways of reporting whether positive HBV tests are linked with prenatal panels. Web-based surveillance systems may be useful for improving capture of data on pregnant women who have HBV infection (LaPorte et al., 2008).



The National Academies | 500 Fifth St. N.W. | Washington, D.C. 20001
Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement