National Academies Press: OpenBook

The Future of Computing Performance: Game Over or Next Level? (2011)

Chapter: Appendix C: Reprint of Gordon E. Moore's "Cramming More Components onto Integrated Circuits"

« Previous: Appendix B: Biographies of Committee Members and Staff
Suggested Citation:"Appendix C: Reprint of Gordon E. Moore's "Cramming More Components onto Integrated Circuits"." National Research Council. 2011. The Future of Computing Performance: Game Over or Next Level?. Washington, DC: The National Academies Press. doi: 10.17226/12980.
×

C


Reprint of Gordon E. Moore’s “Cramming More Components onto Integrated Circuits”

NOTE: Reprinted from Gordon Moore, 1965, Cramming more components onto integrated circuits, Electronics 38(8) with permission from Intel Corporation.

 

Suggested Citation:"Appendix C: Reprint of Gordon E. Moore's "Cramming More Components onto Integrated Circuits"." National Research Council. 2011. The Future of Computing Performance: Game Over or Next Level?. Washington, DC: The National Academies Press. doi: 10.17226/12980.
×

Cramming More Components onto Integrated Circuits


GORDON E. MOORE, LIFE FELLOW, IEEE

With unit cost falling as the number of components per circuit rises, by 1975 economics may dictate squeezing as many as 65 000 components on a single silicon chip.

The future of integrated electronics is the future of electronics itself. The advantages of integration will bring about a proliferation of electronics, pushing this science into many new areas.

Integrated circuits will lead to such wonders as home computers—or at least terminals connected to a central computer—automatic controls for automobiles, and personal portable communications equipment. The electronic wristwatch needs only a display to be feasible today.

But the biggest potential lies in the production of large systems. In telephone communications, integrated circuits in digital filters will separate channels on multiplex equipment. Integrated circuits will also switch telephone circuits and perform data processing.

Computers will be more powerful, and will be organized in completely different ways. For example, memories built of integrated electronics may be distributed throughout the machine instead of being concentrated in a central unit. In addition, the improved reliability made possible by integrated circuits will allow the construction of larger processing units. Machines similar to those in existence today will be built at lower costs and with faster turnaround.

I. PRESENT AND FUTURE

By integrated electronics, I mean all the various technologies which are referred to as microelectronics today as well as any additional ones that result in electronics functions supplied to the user as irreducible units. These technologies were first investigated in the late 1950’s. The object was to miniaturize electronics equipment to include increasingly complex electronic functions in limited space with minimum weight. Several approaches evolved, including microassembly techniques for individual components, thin-film structures, and semiconductor integrated circuits.

Reprinted from Gordon E. Moore, “Cramming More Components onto Integrated Circuits,” Electronics, pp. 114-117, April 19, 1965.

Publisher Item Identifier S 0018-9219(98)00753-1.

Each approach evolved rapidly and converged so that each borrowed techniques from another. Many researchers believe the way of the future to be a combination of the various approaches.

The advocates of semiconductor integrated circuitry are already using the improved characteristics of thin-film resistors by applying such films directly to an active semiconductor substrate. Those advocating a technology based upon films are developing sophisticated techniques for the attachment of active semiconductor devices to the passive film arrays.

Both approaches have worked well and are being used in equipment today.

II. THE ESTABLISHMENT

Integrated electronics is established today. Its techniques are almost mandatory for new military systems, since the reliability, size, and weight required by some of them is achievable only with integration. Such programs as Apollo, for manned moon flight, have demonstrated the reliability of integrated electronics by showing that complete circuit functions are as free from failure as the best individual transistors.

Most companies in the commercial computer field have machines in design or in early production employing integrated electronics. These machines cost less and perform better than those which use “conventional” electronics.

Instruments of various sorts, especially the rapidly increasing numbers employing digital techniques, are starting to use integration because it cuts costs of both manufacture and design.

The use of linear integrated circuitry is still restricted primarily to the military. Such integrated functions are expensive and not available in the variety required to satisfy a major fraction of linear electronics. But the first applications are beginning to appear in commercial electronics, particularly in equipment which needs low-frequency amplifiers of small size.

III. RELIABILITY COUNTS

In almost every case, integrated electronics has demonstrated high reliability. Even at the present level of pro-

Suggested Citation:"Appendix C: Reprint of Gordon E. Moore's "Cramming More Components onto Integrated Circuits"." National Research Council. 2011. The Future of Computing Performance: Game Over or Next Level?. Washington, DC: The National Academies Press. doi: 10.17226/12980.
×

duction—low compared to that of discrete components—it offers reduced systems cost, and in many systems improved performance has been realized.

Integrated electronics will make electronic techniques more generally available throughout all of society, performing many functions that presently are done inadequately by other techniques or not done at all. The principal advantages will be lower costs and greatly simplified design—payoffs from a ready supply of low-cost functional packages.

For most applications, semiconductor integrated circuits will predominate. Semiconductor devices are the only reasonable candidates presently in existence for the active elements of integrated circuits. Passive semiconductor elements look attractive too, because of their potential for low cost and high reliability, but they can be used only if precision is not a prime requisite.

Silicon is likely to remain the basic material, although others will be of use in specific applications. For example, gallium arsenide will be important in integrated microwave functions. But silicon will predominate at lower frequencies because of the technology which has already evolved around it and its oxide, and because it is an abundant and relatively inexpensive starting material.

IV. COSTS AND CURVES

Reduced cost is one of the big attractions of integrated electronics, and the cost advantage continues to increase as the technology evolves toward the production of larger and larger circuit functions on a single semiconductor substrate. For simple circuits, the cost per component is nearly inversely proportional to the number of components, the result of the equivalent piece of semiconductor in the equivalent package containing more components. But as components are added, decreased yields more than compensate for the increased complexity, tending to raise the cost per component. Thus there is a minimum cost at any given time in the evolution of the technology. At present, it is reached when 50 components are used per circuit. But the minimum is rising rapidly while the entire cost curve is falling (see graph). If we look ahead five years, a plot of costs suggests that the minimum cost per component might be expected in circuits with about 1000 components per circuit (providing such circuit functions can be produced in moderate quantities). In 1970, the manufacturing cost per component can be expected to be only a tenth of the present cost.

The complexity for minimum component costs has increased at a rate of roughly a factor of two per year (see graph). Certainly over the short term this rate can be expected to continue, if not to increase. Over the longer term, the rate of increase is a bit more uncertain, although there is no reason to believe it will not remain nearly constant for at least ten years. That means by 1975, the number of components per integrated circuit for minimum cost will be 65 000.

I believe that such a large circuit can be built on a single wafer.

image

Fig. 1.

V. TWO-MIL SQUARES

With the dimensional tolerances already being employed in integrated circuits, isolated high-performance transistors can be built on centers two-thousandths of an inch apart. Such a two-mil square can also contain several kilohms of resistance or a few diodes. This allows at least 500 components per linear inch or a quarter million per square inch. Thus, 65 000 components need occupy only about one-fourth a square inch.

On the silicon wafer currently used, usually an inch or more in diameter, there is ample room for such a structure if the components can be closely packed with no space wasted for interconnection patterns. This is realistic, since efforts to achieve a level of complexity above the presently available integrated circuits are already under way using multilayer metallization patterns separated by dielectric films. Such a density of components can be achieved by present optical techniques and does not require the more exotic techniques, such as electron beam operations, which are being studied to make even smaller structures.

VI. INCREASING THE YIELD

There is no fundamental obstacle to achieving device yields of 100%. At present, packaging costs so far exceed the cost of the semiconductor structure itself that there is no incentive to improve yields, but they can be raised as high as is economically justified. No barrier exists comparable to the thermodynamic equilibrium considerations that often limit yields in chemical reactions; it is not even necessary to do any fundamental research or to replace present processes. Only the engineering effort is needed.

In the early days of integrated circuitry, when yields were extremely low, there was such incentive. Today ordinary integrated circuits are made with yields comparable with those obtained for individual semiconductor devices. The same pattern will make larger arrays economical, if other considerations make such arrays desirable.

Suggested Citation:"Appendix C: Reprint of Gordon E. Moore's "Cramming More Components onto Integrated Circuits"." National Research Council. 2011. The Future of Computing Performance: Game Over or Next Level?. Washington, DC: The National Academies Press. doi: 10.17226/12980.
×

image

Fig. 2.

image

Fig. 3.

VII. HEAT PROBLEM

Will it be possible to remove the heat generated by tens of thousands of components in a single silicon chip?

If we could shrink the volume of a standard high-speed digital computer to that required for the components themselves, we would expect it to glow brightly with present power dissipation. But it won’t happen with integrated circuits. Since integrated electronic structures are two dimensional, they have a surface available for cooling close to each center of heat generation. In addition, power is needed primarily to drive the various lines and capacitances associated with the system. As long as a function is confined to a small area on a wafer, the amount of capacitance which must be driven is distinctly limited. In fact, shrinking dimensions on an integrated structure makes it possible to operate the structure at higher speed for the same power per unit area.

VIII. DAY OF RECKONING

Clearly, we will be able to build such component-crammed equipment. Next, we ask under what circumstances we should do it. The total cost of making a particular system function must be minimized. To do so, we could amortize the engineering over several identical items, or evolve flexible techniques for the engineering of large functions so that no disproportionate expense need be borne by a particular array. Perhaps newly devised design automation procedures could translate from logic diagram to technological realization without any special engineering.

It may prove to be more economical to build large systems out of smaller functions, which are separately packaged and interconnected. The availability of large functions, combined with functional design and construction, should allow the manufacturer of large systems to design and construct a considerable variety of equipment both rapidly and economically.

IX. LINEAR CIRCUITRY

Integration will not change linear systems as radically as digital systems. Still, a considerable degree of integration will be achieved with linear circuits. The lack of large-value capacitors and inductors is the greatest fundamental limitation to integrated electronics in the linear area.

By their very nature, such elements require the storage of energy in a volume. For high Q it is necessary that the volume be large. The incompatibility of large volume and integrated electronics is obvious from the terms themselves. Certain resonance phenomena, such as those in piezoelectric crystals, can be expected to have some applications for tuning functions, but inductors and capacitors will be with us for some time.

The integrated RF amplifier of the future might well consist of integrated stages of gain, giving high performance at minimum cost, interspersed with relatively large tuning elements.

Other linear functions will be changed considerably. The matching and tracking of similar components in integrated structures will allow the design of differential amplifiers of greatly improved performance. The use of thermal feedback effects to stabilize integrated structures to a small fraction of a degree will allow the construction of oscillators with crystal stability.

Even in the microwave area, structures included in the definition of integrated electronics will become increasingly important. The ability to make and assemble components small compared with the wavelengths involved will allow the use of lumped parameter design, at least at the lower frequencies. It is difficult to predict at the present time just how extensive the invasion of the microwave area by integrated electronics will be. The successful realization of such items as phased-array antennas, for example, using a multiplicity of integrated microwave power sources, could completely revolutionize radar.

Suggested Citation:"Appendix C: Reprint of Gordon E. Moore's "Cramming More Components onto Integrated Circuits"." National Research Council. 2011. The Future of Computing Performance: Game Over or Next Level?. Washington, DC: The National Academies Press. doi: 10.17226/12980.
×

image

G. E. Moore is one of the new breed of electronic engineers, schooled in the physical sciences rather than in electronics. He earned a B.S. degree in chemistry from the University of California and a Ph.D. degree in physical chemistry from the California Institute of Technology. He was one of the founders of Fairchild Semiconductor and has been Director of the research and development laboratories since 1959.


Suggested Citation:"Appendix C: Reprint of Gordon E. Moore's "Cramming More Components onto Integrated Circuits"." National Research Council. 2011. The Future of Computing Performance: Game Over or Next Level?. Washington, DC: The National Academies Press. doi: 10.17226/12980.
×
Page 169
Suggested Citation:"Appendix C: Reprint of Gordon E. Moore's "Cramming More Components onto Integrated Circuits"." National Research Council. 2011. The Future of Computing Performance: Game Over or Next Level?. Washington, DC: The National Academies Press. doi: 10.17226/12980.
×
Page 170
Suggested Citation:"Appendix C: Reprint of Gordon E. Moore's "Cramming More Components onto Integrated Circuits"." National Research Council. 2011. The Future of Computing Performance: Game Over or Next Level?. Washington, DC: The National Academies Press. doi: 10.17226/12980.
×
Page 171
Suggested Citation:"Appendix C: Reprint of Gordon E. Moore's "Cramming More Components onto Integrated Circuits"." National Research Council. 2011. The Future of Computing Performance: Game Over or Next Level?. Washington, DC: The National Academies Press. doi: 10.17226/12980.
×
Page 172
Suggested Citation:"Appendix C: Reprint of Gordon E. Moore's "Cramming More Components onto Integrated Circuits"." National Research Council. 2011. The Future of Computing Performance: Game Over or Next Level?. Washington, DC: The National Academies Press. doi: 10.17226/12980.
×
Page 173
Next: Appendix D: Reprint of Robert H. Dennard's "Design of Ion-Implanted MOSFET's with Very Small Physical Dimensions" »
The Future of Computing Performance: Game Over or Next Level? Get This Book
×
Buy Paperback | $46.00 Buy Ebook | $36.99
MyNAP members save 10% online.
Login or Register to save!
Download Free PDF

The end of dramatic exponential growth in single-processor performance marks the end of the dominance of the single microprocessor in computing. The era of sequential computing must give way to a new era in which parallelism is at the forefront. Although important scientific and engineering challenges lie ahead, this is an opportune time for innovation in programming systems and computing architectures. We have already begun to see diversity in computer designs to optimize for such considerations as power and throughput. The next generation of discoveries is likely to require advances at both the hardware and software levels of computing systems.

There is no guarantee that we can make parallel computing as common and easy to use as yesterday's sequential single-processor computer systems, but unless we aggressively pursue efforts suggested by the recommendations in this book, it will be "game over" for growth in computing performance. If parallel programming and related software efforts fail to become widespread, the development of exciting new applications that drive the computer industry will stall; if such innovation stalls, many other parts of the economy will follow suit.

The Future of Computing Performance describes the factors that have led to the future limitations on growth for single processors that are based on complementary metal oxide semiconductor (CMOS) technology. It explores challenges inherent in parallel computing and architecture, including ever-increasing power consumption and the escalated requirements for heat dissipation. The book delineates a research, practice, and education agenda to help overcome these challenges. The Future of Computing Performance will guide researchers, manufacturers, and information technology professionals in the right direction for sustainable growth in computer performance, so that we may all enjoy the next level of benefits to society.

  1. ×

    Welcome to OpenBook!

    You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

    Do you want to take a quick tour of the OpenBook's features?

    No Thanks Take a Tour »
  2. ×

    Show this book's table of contents, where you can jump to any chapter by name.

    « Back Next »
  3. ×

    ...or use these buttons to go back to the previous chapter or skip to the next one.

    « Back Next »
  4. ×

    Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

    « Back Next »
  5. ×

    Switch between the Original Pages, where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

    « Back Next »
  6. ×

    To search the entire text of this book, type in your search term here and press Enter.

    « Back Next »
  7. ×

    Share a link to this book page on your preferred social network or via email.

    « Back Next »
  8. ×

    View our suggested citation for this chapter.

    « Back Next »
  9. ×

    Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

    « Back Next »
Stay Connected!