issues that cut across the above fields. Recommendations are found in the individual chapters and are referenced here by number following the recommendation.


For each of the three major areas considered—biomedical sciences, behavioral and social sciences, and clinical sciences—the committee commissioned contractors to develop workforce models using two different methods. One is a life-table model, similar to that used in the past two studies, and the other is a new approach that relied on a systems dynamics model. Each model includes estimates of the numbers of new Ph.D.s and M.D.s entering the workforce and of the size of the workforce through 2016. The results of this modeling should be taken as approximations, because the data available to analyze the past and current status of the workforce are incomplete, the career trajectories of new doctorates are not predictable, and most importantly, it is impossible to judge the effects of the current major stresses on the world and national economies, on the budget available for research, and on the state of the world in general with regard to war, disease, and immigration policies.

The models predict substantial growth in the biomedical and clinical sciences and little growth in the behavioral and social sciences. The role that foreign scientists will play in influencing the size of the job market in the biomedical and clinical sciences is significant, and changes in the level of participation among these foreign scientists could reduce the predicted growth. The life-table model estimates a larger biomedical workforce in 2016 than does the systems dynamic model for scenarios with the greatest projected workforce entrance. The differences in the workforce projections among the different scenarios are substantial, and it is difficult to predict which scenario will provide the best estimate, considering the status of the economy, the national debt, and research support. Unemployment among trained researchers should remain low; however, in 2006 there was an increase in the number of postdoctorates in all sectors, and this may reflect a weakening of the job market as the NIH budget, after its doubling, was essentially kept constant.


When the study committee began its deliberations, the economy was showing the first signs of a downturn that would deepen to a recession and dramatically affect employment and economic development around the world. Spending over the past decade and the cost of the stimulus package have significantly increased the debt of the federal government, and reports such as that from the U.S. Deficit Commission predict massive reductions in U.S. spending. The extent of any future cuts in the NIH budget—and, in particular, the extent of cuts that affect training—is unknown. As the committee reviewed the state of research training, however, it became clear that recommendations that call for increases in the NIH training budget are important and should be made for the health of the current and future research workforce in the biomedical, behavioral, and clinical sciences.

Given the current and projected future economic environment, it is unlikely that the NIH budget will allow for the implementation of recommendations that require new external funds. A more realistic possibility is the reallocation of existing resources. It is not within the committee’s charge, nor did we have the information to recommend how funds within the NIH might be reallocated. The NIH is in the best position to realign its agenda. Recognizing that reallocation of existing funds is nearly inevitable, however, we have identified the three most costly recommendations and placed them in priority order.


The primary task of recommending the number of NRSA positions for 2010-2015 was complicated by the inconclusive results from the two models for projecting the future workforce combined with the existence of major economic uncertainties. Based on the ongoing need to maintain a strong research workforce, the committee recommends that the total number of NRSA positions in the biomedical and clinical sciences should remain at least at the fiscal year 2008 level and in the behavioral sciences should increase back to the 2004 level. Furthermore, future adjustments should be closely linked to the total extramural research funding in the biomedical, clinical, and behavioral sciences (3–1, 4–3, and 5–1). In recommending this linkage, the committee realizes that in the case of a decline in extramural research, a decline in training would also be appropriate.

The year 2008 is the last year for which the most complete data are available and represents the highest level of support in recent years in the biomedical and clinical sciences. In contrast, 2008 support in the behavioral sciences declined from the 2004 level. Bringing the level of support in the behavioral and social sciences in 2008 up to the level in 2004 would require the addition of about 370 training slots at a cost of about $15 million. Considering the importance of research in this area, a return to the previous level is essential.

The highest quality of workforce is necessary for a successful research enterprise. The NRSA program is important in this regard. Even if it trains only a small fraction of all the students and postdoctoral fellows involved in research, these training programs set the standards for the entire research training establishment. In addition, they attract high-quality students into research and into fields of particular need. The record of success of NRSA award holders in obtaining research funding is impressive, and the results of the nation’s training efforts are self-evident: The United States continues as a world leader in research.

The National Academies of Sciences, Engineering, and Medicine
500 Fifth St. N.W. | Washington, D.C. 20001

Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement