segments of the power generation market, such as peak demand, when electricity rates are highest. Implementation, that is, deploying more renewable energy technologies, follows a distinct path in each country. Despite those differences in existing infrastructure and policy/regulatory frameworks, there are substantial areas where cooperation could be mutually beneficial.

Within this context, the U.S. National Academies, in collaboration with the Chinese Academy of Sciences (CAS) and Chinese Academy of Engineering (CAE), assembled expert committees to review renewable energy development and deployment in the two countries, to highlight prospects for collaboration throughout the research-to-deployment chain and to suggest strategies that would promote more rapid and economical attainment of renewable energy goals. The United States and China have been engaged in cooperation on renewable energy officially since 1979—this history of cooperation has laid the groundwork for the sustained, high-level cooperation called for in this report.

Instead of organizing their analysis by resource or generation technology (i.e., wind, solar, biomass), the committees elected to analyze the technical, policy, and market factors that will influence overall growth in the renewable power sector. At the same time, the committees observed lessons from one country that appear to have implications for the other—these are reflected in some of the committee’s recommendations. An important but sometimes overlooked aspect of the U.S.-Chinese bilateral relationship is that, through closer collaboration, each country greatly enhances its opportunities for organizational learning. This is particularly true for technological learning, because accelerated manufacturing and deployment of renewable power systems in one country can quickly have a global impact. Considering that renewable power generation is competing with well-established industries, harnessing knowledge on best practices in everything from resource characterization to research commercialization should help the sector become more competitive.


Excluding conventional hydropower, renewables’ share of generation in both countries is quite small (less than 3 percent from non-hydro sources) in comparison to fossil-fuel power plants. Conventional hydropower is the predominant source of renewable power, and China still has abundant potential large-scale resources that might be developed. Massive solar and wind resources exist in remote regions of each country, but both the United States and China lack the large-scale transmission infrastructure to access these resources, and there is debate as to how much of these resources can and will be exploited cost efficiently. Biomass offers a substantial resource for direct power production and co-firing in coal power generation. Other resources, such as geothermal, are being exploited to provide some generation as well as other energy services (heating and cooling).

Table S-1 illustrates the relative contributions of various renewable power sources to total electrical generation in each country for 2009. In 2009 China

The National Academies of Sciences, Engineering, and Medicine
500 Fifth St. N.W. | Washington, D.C. 20001

Copyright © National Academy of Sciences. All rights reserved.
Terms of Use and Privacy Statement